微光CMOS圖像傳感器讀出電路設(shè)計
當(dāng)前固體微光器件以EBCCD及EMCCD器件為主,隨著CMOS工藝及電路設(shè)計技術(shù)的發(fā)展,微光CMOS圖像傳感器的性能在不斷提高,通過采用專項技術(shù),微光CMOS圖像傳感器的性能已接近EMCCD的性能,揭開了CMOS圖像傳感器在微光領(lǐng)域應(yīng)用的序幕。隨著對微光CMOS圖像傳感器研究的進(jìn)一步深入,在不遠(yuǎn)的未來,微光CMOS圖像傳感器的性能將達(dá)到夜視應(yīng)用要求,在微光器件領(lǐng)域占據(jù)重要地位。
讀出電路是微光CMOS圖像傳感器的重要組成部分,它的基本功能是將探測器微弱的電流、電壓或電阻變化轉(zhuǎn)換成后續(xù)信號處理電路可以處理的電信號,它的噪聲水平限制著CMOS圖像傳感器在微光下的應(yīng)用。微光條件下像素的輸出信號十分微弱,任何過大的電路噪聲、偏移都可以將信號湮沒,因此提高讀出電路輸出信號的SNR是微光設(shè)計的關(guān)鍵之一。本文采用的新型電容反饋跨阻放大型讀出電路CTIA電路,可以提供很低的探測器輸入阻抗和恒定的探測器偏置電壓,在從很低到很高的背景范圍內(nèi),都具有非常低的噪聲,其輸出信號的線性度和均勻性也很好,適合微弱信號的讀出。
1電路設(shè)計
為完成探測器輸出電流向電壓的精確轉(zhuǎn)化,所設(shè)計的電路由CTIA和相關(guān)雙采樣(CDS)組成,CTIA由反向放大器和反饋積分電容構(gòu)成的一種復(fù)位積分器。其增益大小由積分電容確定。圖1為典型CTIA電路結(jié)構(gòu)。
圖1典型CTIA結(jié)構(gòu)
當(dāng)Reset信號為高時,MOS開關(guān)開通,由運算放大器的虛短特性可知,輸入端的電壓與Vref相等,此時積分電容兩端電壓相等,都為Vref.當(dāng)reset信號變?yōu)榈碗娖綍r,MOS開關(guān)關(guān)斷,由于輸入端的電壓由Vref控制,因此在積分電容Cf右極板上產(chǎn)生感應(yīng)電荷并慢慢積累,右極板電壓逐漸增大,積分過程開始。最后電壓通過相關(guān)雙采樣電路讀出。
2關(guān)鍵單元電路設(shè)計
2.1高增益低噪聲CTIA電路
為了提高讀出電路的增益,使電路能在比較短的積分時間內(nèi),讀出PA級的電流,電路中的積分電容要非常小。同時為了提高信噪比,在減小積分電容的同時,電路噪聲也要減小。在新型電路結(jié)構(gòu)中,采用T型網(wǎng)絡(luò)電容加nmos開關(guān),電路結(jié)構(gòu)如圖2所示。
圖2高增益低噪聲CTIA電路
由于C1和C2的作用,使得Cf在CTIA反饋回路中的有效值減少,其有效值為:Cfb= ( C2Cf)/(Cf +C1+C2),這樣Cf可以取相對較大的值,避免了使用小電容,因為小電容在工藝上較難實現(xiàn),且誤差較大。在本電路中,Cf=20 fF,C2=18 fF,C1=150 fF,則Cfb=2 fF.
圖3為該電路的工作時序。
圖3高增益低噪聲CTIA電路工作時序
該電路可工作在高增益模式或低增益模式。在高增益模式,當(dāng)reset為高電平時,gaIn導(dǎo)通,這時有效電容為Cf,當(dāng)reset為低電平時,gaIn關(guān)斷,此時的積分電容為Cf、C1和C2組成的T型網(wǎng)絡(luò)電容,這樣保證了電路在復(fù)位時大電容,可有效降低噪聲,積分時小電容,可大大提高增益。當(dāng)gaIn一直為高電平時,電路工作在低增益模式。
2.2相關(guān)雙采樣
相關(guān)雙采樣電路由兩組電容和開關(guān)組成,電路工作過程如下。首先,開始積分,R導(dǎo)通,相關(guān)雙采樣電路先讀出像素的復(fù)位信號,存儲Vreset電壓到電容Creset中。積分完成,開關(guān)S導(dǎo)通,將電壓Vread儲存到電容Csig中。最后,將存儲在兩個電容之上的電壓值相減得到最終的像素輸出電壓值:
Vout=Vouts -Voutr
這種結(jié)構(gòu)可以很好的消除CMOS圖像傳感器中像素的復(fù)位噪聲、1/f噪聲以及像素內(nèi)的固定模式噪聲。
3噪聲分析
CMOS讀出電路中包括光探測器、MOS管和電容3種元件。光探測器和MOS管是讀出電路的主要噪聲源,這些噪聲包括:一方面光探測器和MOS管的固有噪聲;另一方面由讀出電路結(jié)構(gòu)和工作方式引起的噪聲。
3.1光探測器噪聲
復(fù)位噪聲是由復(fù)位管引入的一種隨機噪聲。當(dāng)像素進(jìn)行復(fù)位時,復(fù)位管處于飽和區(qū)或亞閾值區(qū),具體狀態(tài)取決于光電二極管的電壓值。復(fù)位管導(dǎo)通時可以等效為一個電阻,而電阻存在的熱噪聲將引入到復(fù)位信號形成復(fù)位噪聲。其大小與二極管的電容有關(guān),復(fù)位噪聲電壓為
,其中k為波爾茲曼常數(shù)、T為溫度,C為二極管的等效電容。復(fù)位噪聲本質(zhì)上是一個熱噪聲,具有隨機性,只能夠減小而不能夠徹底消除。在本電路中,C=1.3 P,Vn=56μV。
散粒噪聲是指由于電子的隨機到達(dá)而引起器件中電流的隨機波動。因此,散粒噪聲與流過器件的電流大小相關(guān),并且服從泊松分布。散粒噪聲與熱噪聲相區(qū)別,熱噪聲在沒有任何電壓或平均電流的條件下同樣存在,而散粒噪聲在沒有電流條件下不存在。像素的散粒噪聲與像素中的電流相關(guān),包括光電流、暗電流。其計算公式如下:
光電流散粒噪聲與照度有關(guān),很難消除。與暗電流有關(guān)的散粒噪聲可以通過改變摻雜濃度減小暗電流,但這會降低量子效率。在本電路中,In=100 fA,Is=20 pA,Tint=20μs,C int =2 fF,則Vdarkn=0.28 mV,Vsn=4 mV。
3.2讀出電路噪聲
閃爍噪聲也稱為1/f噪聲。在半導(dǎo)體材料中,晶體缺陷和雜質(zhì)的存在會產(chǎn)生陷阱,陷阱隨機捕獲或釋放載流子形成閃爍噪聲。在讀出電路中,CTIA放大器是閃爍噪聲的主要來源。
CTIA讀出噪聲與輸入端電容Cin=Cpd、反饋電容Cfb,以及負(fù)載電容CL的設(shè)計均有關(guān),其小信號噪聲模型如圖4所示。[!--empirenews.page--]
圖4 CTIA放大器噪聲模型
噪聲電壓為
在本電路中,Cfb=2 fF,Cpd=1.3 pF,CL=1 pf,α=1.5,T=300 K,則Vn=2 mV。
3.3固定模式噪聲(FPN)
之所以稱為固定模式噪聲,是因為這種噪聲產(chǎn)生的影響不隨時間的變化而變化,即表現(xiàn)在每幀圖像上的誤差是一致的。像素的固定模式噪聲可以通過讀出電路中的相關(guān)雙采樣電路進(jìn)行消除。通過以上分析,在本電路中,噪聲的主要來源在于光探測器的散粒噪聲和CTIA放大器的閃爍噪聲,輸出總噪聲為
噪聲電壓為
其中:Av為輸出跟隨放大器增益0.7。
根據(jù)公式,理論計算噪聲電壓Vn=3.1 mV,實際電路的噪聲水平會比理論值大2倍左右。
4仿真與測試結(jié)果
4.1電路版圖和仿真結(jié)果
本文所設(shè)計的電路采用CSMC公司0.5μm CMOS工藝模型,對電路進(jìn)行Spectre仿真、版圖設(shè)計和流片。
表1是對探測器進(jìn)行的參數(shù)設(shè)置,主要依據(jù)的是相應(yīng)材料制作的探測器對應(yīng)測試得到的等效電阻值和等效電容值以及探測器流過的光生電流來確定的,其中Vref是外加在放大器正相端的電壓值。
表1仿真時單元電路參數(shù)取值
圖5 CTIA輸出波形
從圖5可看出,當(dāng)信號電流為20 pA時,電路輸出差分電壓為90 mV,根據(jù)噪聲電壓的估算值,最小信號的信噪比SNR=15。
4.2測試結(jié)果
采用CSMC公司的0.5μm標(biāo)準(zhǔn)CMOS工藝庫對電路進(jìn)行流片,表2為仿真結(jié)果和實際測試結(jié)果比較(Cf=20 fF,C1=150 fF,C2=18 fF信號輸入20~300 pA,積分時間20μs)。
從表2可以看出,實測結(jié)果略小于仿真結(jié)果,當(dāng)光信號為20 pA時,測得電路噪聲電壓為8 mV,則SNR=10.8。
5結(jié)論
本文設(shè)計了一種高增益低噪聲的探測器讀出電路,采用CTIA與CDS電路相結(jié)合,通過對CTIA電路中積分電容的改進(jìn),使電路在寬范圍內(nèi)對微弱信號讀出,并采用開關(guān)控制和CDS電路來降低噪聲,使電路信噪比達(dá)到10,該電路對航空航天領(lǐng)域微光探測系統(tǒng)讀出電路的設(shè)計具有重要意義。