當(dāng)前位置:首頁(yè) > 電源 > 功率器件
[導(dǎo)讀]IGBT技術(shù)不能落后于應(yīng)用要求。因此,英飛凌推出了最新一代的IGBT芯片以滿足具體應(yīng)用的需求。與目前逆變器設(shè)計(jì)應(yīng)用功率或各自額定電流水平相關(guān)的開(kāi)關(guān)速度和軟度要求是推動(dòng)這

IGBT技術(shù)不能落后于應(yīng)用要求。因此,英飛凌推出了最新一代的IGBT芯片以滿足具體應(yīng)用的需求。與目前逆變器設(shè)計(jì)應(yīng)用功率或各自額定電流水平相關(guān)的開(kāi)關(guān)速度和軟度要求是推動(dòng)這些不同型號(hào)器件優(yōu)化的主要?jiǎng)恿Α_@些型號(hào)包括具備快速開(kāi)關(guān)特性的T4芯片、具備軟開(kāi)關(guān)特性的P4芯片和開(kāi)關(guān)速度介于T4和P4之間的E4芯片。

表1簡(jiǎn)單介紹了IGBT的3個(gè)折衷點(diǎn),并對(duì)相應(yīng)的電流范圍給出了建議。

IGBT和二極管的動(dòng)態(tài)損耗
為研究和比較這三款不同芯片在雜散電感從23nH到100nH時(shí)的開(kāi)關(guān)損耗和軟度,我們選用了一種接近最優(yōu)化使用T4芯片的合理限值的模塊。因此,選擇一個(gè)采用常見(jiàn)的62mm封裝300A半橋配置作為平臺(tái),而模塊則分別搭載了這三款I(lǐng)GBT芯片。

這三個(gè)模塊都采用了相同的高效發(fā)射極控制二極管和柵極驅(qū)動(dòng)設(shè)置。圖1為實(shí)驗(yàn)設(shè)置。

圖2顯示了兩個(gè)不同雜散電感對(duì)配備IGBT-T4的300A半橋的開(kāi)通波形的影響。

當(dāng)電流升高后,更高的雜散電感Ls不僅可以增大器件端子的電感壓降(Δu=-L*di/dt),而且還能影響電流上升速度di/dt本身。盡管寄生電感使導(dǎo)通速度減緩,但導(dǎo)通損耗卻大幅降低。

在該示例中,初始開(kāi)關(guān)階段的損耗(見(jiàn)圖2中的時(shí)間戳a)隨著雜散電感的增大由30.4mW降至12mW。

開(kāi)關(guān)事件第二階段的特點(diǎn)是二極管出現(xiàn)反向恢復(fù)電流峰值以及IGBT電壓進(jìn)一步下降。寄生電感的增大會(huì)導(dǎo)致反向恢復(fù)電流峰值的延遲,以及第二階段開(kāi)關(guān)損耗的提高。

因此,就整個(gè)開(kāi)關(guān)事件而言,寄生電感的增大可大幅降低開(kāi)通損耗。在本例中,損耗由40mW降低至23.2mW。

眾所周知,雖然在開(kāi)通過(guò)程中di/dt可降低IGBT的電壓,但在關(guān)斷過(guò)程中它也會(huì)增大IGBT的電壓過(guò)沖。因此,直流母線電感的增加會(huì)增大關(guān)斷損耗。如圖3所示,關(guān)斷的開(kāi)關(guān)事件可分為兩個(gè)階段。

小電感和大電感設(shè)置的電流波形在時(shí)間戳b的位置交叉。在第一開(kāi)關(guān)階段直到交叉點(diǎn)b,采用大電感設(shè)置升高的過(guò)壓會(huì)使損耗增至36.3mJ,而小電感設(shè)置的損耗為30.8mJ。不過(guò),在b點(diǎn)之后,大電感設(shè)置會(huì)產(chǎn)生較短的電流拖尾,這樣該階段的損耗會(huì)比小電感設(shè)置的損耗低1.8mJ。這一結(jié)果主要受電流拖尾降低的影響,即更快速地達(dá)到10%的值。

隨著雜散電感的增大,IGBT的開(kāi)通損耗會(huì)降低,二極管損耗則會(huì)增大(如圖4所示)。圖4顯示了在小電感和大電感條件下二極管恢復(fù)特性的對(duì)比。


顯而易見(jiàn),IGBT降低的di/dt幾乎對(duì)二極管換流開(kāi)始階段的損耗沒(méi)有任何影響,因?yàn)槎O管電壓依然維持在零左右。在反向恢復(fù)峰值電流之后,更大雜散電感引起的二極管電壓升高決定并導(dǎo)致了額外的損耗。小電感和大電感設(shè)置的二極管拖尾電流中可再次看到交叉點(diǎn)c。更高的過(guò)壓使得c點(diǎn)之前的損耗從10.1mJ增至19.6mJ。與IGBT的情況一樣,增加的動(dòng)態(tài)過(guò)壓會(huì)導(dǎo)致c點(diǎn)之后的拖尾電流降低,大電感設(shè)置的損耗平衡將優(yōu)化4.4mJ??傊?,第一開(kāi)關(guān)階段起主導(dǎo)作用,二極管損耗隨著電感的增加從24.6mJ提高至29.7mJ,增幅為20%。


盡管在開(kāi)通過(guò)程中,di/dt與寄生電感的結(jié)合可降低IGBT的電壓,但在關(guān)斷過(guò)程中,它將增大IGBT的電壓過(guò)沖。將開(kāi)通與關(guān)斷過(guò)程進(jìn)行左右對(duì)比,不難看出,在較大寄生電感時(shí)開(kāi)通損耗的降度遠(yuǎn)高于關(guān)斷損耗的增幅。


如果考慮到最新溝槽柵場(chǎng)截止IGBT的關(guān)斷di/dt本質(zhì)上受器件動(dòng)態(tài)性能的制約,約為導(dǎo)通di/dt的一半,就可輕松理解這一趨勢(shì)。


在圖5中,對(duì)IGBT開(kāi)通損耗、關(guān)斷損耗以及二極管換流損耗與三款I(lǐng)GBT的寄生直流母線雜散電感進(jìn)行了對(duì)比。



IGBT和二極管的軟度和電流突變特性


前文已經(jīng)表明寄生電感可能對(duì)總體損耗平衡有益。但是雜散電感還可能導(dǎo)致振蕩,比如由電流突變引起的振蕩,這可能導(dǎo)致由于EMI或過(guò)壓限制而引起的器件使用受限。迄今為止所介紹的所有測(cè)量都是在對(duì)損耗至關(guān)重要的Tvj=150℃結(jié)溫條件下進(jìn)行的。電流突變?cè)诘蜏貤l件下更加關(guān)鍵,因?yàn)槠骷妮d流子注入隨著溫度的降低而減少,并大幅降低用于平滑拖尾電流的電荷。因此,圖6在25℃和600V直流母線電壓的條件下,對(duì)三款芯片在額定電流下的IGBT關(guān)斷情況進(jìn)行了比較。直流母線電感被作為一個(gè)參數(shù)使用。

在給定的例子中,當(dāng)雜散電感約為55nH時(shí),T4會(huì)變硬,振蕩開(kāi)始發(fā)生。在相同條件下,直到直流母線電感達(dá)到約80nH,E4還依然保持了軟度。對(duì)于針對(duì)大功率而優(yōu)化的P4芯片而言,它在觀察到的電感范圍內(nèi)(20nH…100nH)都保持軟度。這種觀察結(jié)果并不出人意外,因?yàn)樵揑GBT是被設(shè)計(jì)用于高達(dá)3600A額定電流的大功率模塊。


盡管IGBT的電流突變趨勢(shì)通常在低溫和大電流下最為明顯,但續(xù)流二極管軟度通常在低溫和小電流下最為關(guān)鍵。這取決于幾個(gè)因素:因?yàn)槎O管是一個(gè)載流子生命周期優(yōu)化器件,等離子體密度在小電流下最低,因此拖尾電荷隨著電流水平的降低而減弱。此外,迫使二極管換向的開(kāi)關(guān)IGBT通常在低電流水平下開(kāi)關(guān)速度更快。最后,二極管過(guò)壓與開(kāi)關(guān)電流沒(méi)有關(guān)系,而是由二極管的反向恢復(fù)電流峰值的負(fù)斜率導(dǎo)致的,該斜率在小電流和低溫下同樣最陡。


由于快速開(kāi)關(guān)瞬變(du/dt和反向恢復(fù)di/dt)的影響,直流母線振蕩可以很容易地在低電流水平下觸發(fā),甚至是在沒(méi)有二極管電流突變的情況下。圖7介紹了續(xù)流二極管在不同雜散電感條件下的反向恢復(fù)特性。

此時(shí),低雜散電感可產(chǎn)品較高的諧振頻率,并且有助于抑制這種振蕩。當(dāng)然,如果大雜散電感使得二極管真的出現(xiàn)電流突變,情況會(huì)更糟。出于EMI的考慮,這將限制較高雜散電感的使用。


本文小結(jié)


當(dāng)工作在相同條件下,IGBT針對(duì)提高軟度需求的設(shè)計(jì)優(yōu)化將會(huì)付出開(kāi)關(guān)損耗提高的代價(jià)。


除開(kāi)關(guān)損耗外,開(kāi)通和關(guān)斷速度、電流突變和振蕩(EMI)的發(fā)生也越來(lái)越受到重視。寄生雜散電感對(duì)直流母線諧振頻率和二極管電流突變起到了重要作用。至少?gòu)腅MI角度考慮,二極管電流突變將會(huì)對(duì)通過(guò)增加雜散電感或提高IGBT開(kāi)通速度來(lái)降低開(kāi)通損耗有所限制。


因此,未來(lái)有望推出IGBT的不同型號(hào)優(yōu)化產(chǎn)品。另一方面,考慮到直流母線電感是逆變器設(shè)計(jì)中的一個(gè)自由參數(shù),這將有助于進(jìn)一步優(yōu)化損耗。


重要的是,為確保采用快速開(kāi)關(guān)器件(如T4芯片),必須對(duì)直流母線設(shè)計(jì)進(jìn)一步優(yōu)化。在高能效設(shè)計(jì)中,對(duì)于電感而言,越低越好是一個(gè)簡(jiǎn)單的原則。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉