當(dāng)前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀] O 引言過去的40年中,MOS器件尺寸的持續(xù)縮小一直是促進(jìn)半導(dǎo)體工業(yè)發(fā)展的動力。人們可以在越來越小的芯片上實現(xiàn)越來越復(fù)雜的功能,并且芯片的價格不斷下降,使得各種便攜式

O 引言

過去的40年中,MOS器件尺寸的持續(xù)縮小一直是促進(jìn)半導(dǎo)體工業(yè)發(fā)展的動力。人們可以在越來越小的芯片上實現(xiàn)越來越復(fù)雜的功能,并且芯片的價格不斷下降,使得各種便攜式產(chǎn)品如筆記本電腦、筆跡識別儀、語音識別器等相繼問世。這些設(shè)備大多依靠電池供電,電池的壽命是有限的,而目前的鎳鎘電池最多能提供的電能只有 26 W/pound。而且,隨著芯片集成度的增加,單位面積上消耗的功率也隨之增加,這不得不增加為芯片散熱的成本。因而,如文獻(xiàn)中所述,電路的低功耗已成為電路設(shè)計的重要指標(biāo)。

從已有的研究成果可知,電路中的功率消耗源主要有以下幾種:由邏輯轉(zhuǎn)換引起的邏輯門對負(fù)載電容充、放電引起的功率消耗;由邏輯門中瞬時短路電流引起的功率消耗;由器件的漏電流引起的消耗,并且每引進(jìn)一次新的制造技術(shù)會導(dǎo)致漏電流20倍的增加,漏電流引起的消耗已經(jīng)成為功率消耗的主要因素。目前降低功耗的方法主要有:減小電源電壓、調(diào)整晶體管尺寸、采用并行和流水線的系統(tǒng)結(jié)構(gòu)、利用睡眠模式、采用絕熱邏輯電路等。其中,能量回收邏輯就是基于絕熱計算發(fā)展起來的一種低功耗設(shè)計技術(shù)。這里簡單介紹一種使用單相正弦電源時鐘的能量回收邏輯,并用這種原理電路設(shè)計了一個兩位的數(shù)字乘法器電路,與靜態(tài)CMOS數(shù)字乘法器相比,這種能量回收乘法器能夠大大降低功率消耗。

1 單相正弦電源時鐘能量回收邏輯電路工作原理

以反相器為例說明這種電路的工作原理,如圖1所示。M1和M2的連接方式與傳統(tǒng)的靜態(tài)CMOS邏輯電路相似。不同的是電源不再是恒定不變的,而是用一個正弦信號代替,這個信號同時起到同步電路工作的作用,因此又稱作電源時鐘。M3和M4連接成二極管的形式用來控制充放電的路徑。

當(dāng)輸入信號B為邏輯“O”時,M1導(dǎo)通,M2截止。正弦信號正半周時,通過M3和M1向負(fù)載電容充電,一旦電容充電到最大值,M3能夠阻止電容向輸入正弦時鐘信號放電,輸出保持在高電平不變。當(dāng)輸入信號B為邏輯“1”時,M1截止,M2導(dǎo)通。正弦信號負(fù)半周時,負(fù)載電容通過M2和M4向輸入正弦時鐘信號放電,一旦電容放電到最小值,M4能夠阻止輸入正弦時鐘信號向電容充電,輸出保持為低電平不變。

2 基于單相能量回收電路的乘法器電路設(shè)計

2.1 基于單相能量回收電路的乘法器

兩位乘法器能夠?qū)崿F(xiàn)2位二進(jìn)制數(shù)的乘法運算,設(shè)A1A0,B1B0為乘數(shù)和被乘數(shù),P3P2P1P0為乘法運算得到的積,由卡諾圖(見圖2)得到兩位乘法器的輸出邏輯函數(shù)表達(dá)式分別為:

為了能用基本的與非門、或非門和異或門電路實現(xiàn)乘法器,上式可以通過邏輯運算變換為:

實現(xiàn)電路時,將靜態(tài)CMOS電路(見圖3)構(gòu)成的與非門、或非門和異或門的電源用圖4所示的電源時鐘電路代替即可。其中Clk+,Clk-分別接CMOS電路中PMOS和NMOS管的D極和S極。

2.2 仿真結(jié)果

在PSpice環(huán)境下,分別仿真了用靜態(tài)CMOS電路和單相能量回收電路構(gòu)成的兩位乘法器電路(見圖5和圖6),圖中只顯示了輸出4位積的低2位P1P0,其中輸入信號 A1A0,B1B0波形見圖6。其他參數(shù)如下:采用CMOS 1.2μm技術(shù),正弦波峰峰值為2.5 V,直流電壓VDD為2.5 V,并假設(shè)乘法器的輸出端接負(fù)載電容為O.1 fF。

從圖中可見,用靜態(tài)CMOS電路構(gòu)成的乘法器輸出比較穩(wěn)定,輸出等于0或VDD,功率消耗為1.51×10-7W。而用單相能量回收電路構(gòu)成的二位乘法器的輸出不夠穩(wěn)定,對噪聲信號較為敏感,但是并不影響輸出邏輯,功率消耗減小為1.17×10-7W。從節(jié)能的角度來看,單相能量回收電路性能更好。

3 結(jié)語

本文首先介紹了單相能量回收反相器電路,詳細(xì)討論電路的工作原理,同時用PSpice工具仿真了基于靜態(tài)CMOS電路和單相能量回收電路構(gòu)成的兩位乘法器電路。仿真結(jié)果表明本文介紹的單相能量回收電路能夠極大地降低電路功耗。今后的工作還應(yīng)繼續(xù)優(yōu)化電路結(jié)構(gòu),穩(wěn)定電路的輸出狀態(tài),增強電路的抗干擾能力。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉