HDU 1297 Children’s Queue
題目鏈接:http://acm.hdu.edu.cn/showproblem.php?pid=1297
題面:
Children’s Queue Time Limit: 2000/1000 MS (Java/Others)????Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 13363????Accepted Submission(s): 4379
Problem Description There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
?
Input There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000) ?
Output For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs. ?
Sample Input 1 2 3 ?
Sample Output 1 2 4 ?
Author SmallBeer (CML) ?
題目大意: ? ? 給定隊(duì)伍長(zhǎng)度,求不出現(xiàn)單獨(dú)一個(gè)女生的方案數(shù)。
解題: ? ? 可以用dp三維來(lái)解決這個(gè)問(wèn)題。dp[i][j][k],i表示是第i位,j為1表示男生,j為0表示女生,k為0表示0個(gè)女生,k為1表示1個(gè)女生,k為2表示多個(gè)女生,即合法狀態(tài)。 ? ? 遞推關(guān)系如下: ? ? ?
dp[i+1][0][2]=dp[i+1][0][2].add(dp[i][0][1]);
dp[i+1][0][2]=dp[i+1][0][2].add(dp[i][0][2]);
dp[i+1][1][0]=dp[i+1][1][0].add(dp[i][0][2]);
dp[i+1][1][0]=dp[i+1][1][0].add(dp[i][1][0]);
dp[i+1][0][1]=dp[i+1][0][1].add(dp[i][1][0]);
部分狀態(tài)雖然不符合最后的要求,即女生不可落單,但計(jì)算過(guò)程中需要用到相應(yīng)值,最后的答案為,dp[n][1][0]+dp[n][0][2]
代碼:
import java.io.*; import java.util.*; import java.math.*; public class Main{ public static void main(String args[]) { BigInteger dp[][][]=new BigInteger [1005][2][3]; Scanner sc =new Scanner(new BufferedInputStream(System.in)); PrintWriter cout=new PrintWriter(System.out); for(int i=0;i<=1004;i++) for(int j=0;j<=1;j++) for(int k=0;k<=2;k++) dp[i][j][k]=BigInteger.ZERO; dp[1][0][1]=BigInteger.valueOf(1); dp[1][1][0]=BigInteger.valueOf(1); for(int i=1;i<=1000;i++) { dp[i+1][0][2]=dp[i+1][0][2].add(dp[i][0][1]); dp[i+1][0][2]=dp[i+1][0][2].add(dp[i][0][2]); dp[i+1][1][0]=dp[i+1][1][0].add(dp[i][0][2]); dp[i+1][1][0]=dp[i+1][1][0].add(dp[i][1][0]); dp[i+1][0][1]=dp[i+1][0][1].add(dp[i][1][0]); } int t; while(sc.hasNext()) { t=sc.nextInt(); cout.println(dp[t][0][2].add(dp[t][1][0])); } cout.flush(); } }