當前位置:首頁 > 公眾號精選 > 光機電領(lǐng)域
[導(dǎo)讀]本示例描述了行波 Mach-Zehnder 調(diào)制器的完整多物理場(電氣、光學、射頻)仿真,最后在INTERCONNECT中進行了緊湊模型電路仿真。計算了相對相移、光學傳輸、傳輸線帶寬和眼圖等關(guān)鍵結(jié)果。

前言

本示例描述了行波 Mach-Zehnder 調(diào)制器的完整多物理場(電氣、光學、射頻)仿真,最后在INTERCONNECT中進行了緊湊模型電路仿真。計算了相對相移、光學傳輸、傳輸線帶寬和眼圖等關(guān)鍵結(jié)果。 

 

綜述

此示例中5毫米長的Si波導(dǎo)由5毫米長的Al共面?zhèn)鬏斁€驅(qū)動的反向偏置pn結(jié)相位調(diào)制:

CHARGE求解器提供pn結(jié)因反向偏置變化而導(dǎo)致的電荷密度變化,以及串聯(lián)平板電阻和pn結(jié)電容。電荷密度的變化被匯入MODE求解器,以計算波導(dǎo)的光學折射率調(diào)制,而平板電阻和結(jié)電容則匯入MODE求解器,以計算傳輸線的射頻特性。然后將光學和射頻自變量以及結(jié)電容匯入INTERCONNECT緊湊模型中,以進行電路仿真并計算光學傳輸和眼圖。

 

步驟1:參雜硅材料波導(dǎo)的電壓-載子濃度分布關(guān)系

由于Lumerical 的Multiphysics CHARGE模塊是用有限元方法(Find Element Method)計算,2D還是3D對求解時間差異明顯。因此首先分析尺寸與模型:pn結(jié)平行電場方向長10um,垂直電場方向?qū)?mm、厚度0.09um且無垂直電場方向的形狀變化,加上載子濃度會與電場分布強相關(guān),建議此步驟用2D求解來節(jié)省時間。但由于摻雜模型需要3D信息定義,我們建立3D模型但用2D的求解范圍,建模中垂直電場方向有個寬度即可。

運用模塊內(nèi)完善的半導(dǎo)體材料以及物理模型設(shè)定建模后,用穩(wěn)態(tài)設(shè)定多個偏壓條件(-0.5~4V,0.5V步長)進行仿真,并于光路調(diào)變范圍設(shè)定設(shè)置電荷監(jiān)視器“monitor_charge”以將電荷密度保存在 tw_modulator_charge.mat 中,稍后將其導(dǎo)入 MODE 求解器。

通過在物件樹中選擇 CHARGE,在結(jié)果視圖窗口中右鍵單擊所需結(jié)果(電荷)并在對數(shù)刻度上對其進行可視化,可以顯示電荷密度,如下圖。

 

步驟2:平板電阻與PN結(jié)電容

此步驟中將再次使用Lumerical 的Multiphysics CHARGE模塊。

案例中,借助腳本抓取仿真結(jié)果,并使用最終差分法計算 pn 結(jié)的直流電容。平板電阻是傳輸線與PN結(jié)連接在一起的均勻面形半導(dǎo)體區(qū)域所產(chǎn)生。PN結(jié)在反向偏壓情況下電阻無窮大,可推估其電容與頻率相關(guān)性不高,以只用一個直流電容來表示。下圖顯示了直流電容,并將其與交流電容進行了比較。圖中顯示 直流電容是準確的,并且類似于在反向偏置中預(yù)期的交流電容。第三張圖是串聯(lián) RC 電路的史密斯圓圖。

 

穩(wěn)態(tài)直流仿真的腳本還將電壓與電容關(guān)系保存于 tw_modulator_dc_C.mat 中,而小信號仿真也搭配腳本由阻抗推導(dǎo)電阻和電容;R 和 C 分別對應(yīng)阻抗的實部和虛部。R 值將保存到tw_modulator_Rslab_tot.dat 中,稍后用于 MODE 和 INTERCONNECT 模擬。

步驟3:光學波導(dǎo)特性

接下來使用Lumerical 的MODE FDE模塊來計算摻雜硅材料波導(dǎo)的光學特性。形狀建模后首先用腳本導(dǎo)入步驟1算得各偏壓下的折射率分布,分別利用Eigenmode求解器算出波長1.55um下的基本模態(tài)信息,包含等效折射率、群折射率、損耗、以及估算有效調(diào)變長度為4.5毫米下的相移,并用腳本提取有效折射率相對于零偏差的變化,零偏差是 INTERCONNECT 中傳輸線幅度調(diào)制的參考(中間)偏差。下圖顯示了光學等效折射率和群折射率(實部)、相對于 0 V 的相移和損耗(與等效折射率的虛部有關(guān))。這些參數(shù)都將存成tw_modulator_optical_data.mat于稍后導(dǎo)入到步驟5 INTERCONNECT模塊。

步驟4:射頻傳輸線特性

第四步驟繼續(xù)用MODE FDE模塊Eigenmode求解器來計算射頻特性。除了定義浸沒在氧化物中的金屬射頻共面?zhèn)鬏斁€,還需導(dǎo)入步驟2中計算的電阻和電容數(shù)據(jù)與結(jié)構(gòu),表示傳輸線之間的平板電阻和pn結(jié)的緊湊模型。

在此借助腳本,首先調(diào)用Eigenmode求解器,采用零偏壓下的電壓相關(guān)電容,對頻率10GHz~100GHz,間格為10GHz的每個頻率求解等效折射率(其中虛部為損耗)和群折射率,再以腳本計算出基本模態(tài)的阻抗(其中實部為電阻,虛部為電抗)。這些結(jié)果也存檔成tw_modulator_RF_data.mat用于INTERCONNECT系統(tǒng)仿真中。代入步驟 2 平板電阻和 pn 結(jié)電容(零偏壓)的值并從腳本中設(shè)置。其中總電阻除以 2 并分配給n 和 p區(qū)域。

下圖顯示了射頻損耗、射頻群折射率、特性阻抗的實部和虛部(電阻和電抗)。

 

步驟5:緊湊模型和電路仿真

使用前面步驟的仿真結(jié)果,我們?yōu)?INTERCONNECT 中構(gòu)成完整調(diào)制器電路的波導(dǎo)、光調(diào)制器和行波電極導(dǎo)入緊湊模型參數(shù)。然后可以在穩(wěn)態(tài)和時域中執(zhí)行電路仿真,以獲得光傳輸與偏置和頻率的關(guān)系以及眼圖。

使用 INTERCONNECT 打開文件 tw_modulator_INTERCONNECT_ONA.icp,它表示調(diào)制器光子電路以及 ONA(Optical Network Analyzer) 測量設(shè)備。調(diào)制器本身包括一個輸入波導(dǎo) Y 分支,其后是每個分支上的波導(dǎo)和光調(diào)制器,以及將 2 個調(diào)制器臂重新組合在一起的輸出 Y 分支。上調(diào)制器臂還有一個行波電極 (TWE),相移應(yīng)用于此臂,而下臂保持零參考偏壓。光網(wǎng)絡(luò)分析儀向輸入 Y 支路提供光輸入,并從輸出 Y 支路接收輸出光信號,而上臂 TWE 被直流信號偏置。

 

行波電極可調(diào)變光程最大為5000um(假設(shè)90%有效),源端與輸出端阻抗都設(shè)定50 Ohm,其他則為腳本輸入的步驟2與4仿真結(jié)果。整個系統(tǒng)器件的操作波長設(shè)為1.55um,在0V偏壓情況下對應(yīng)的有效折射率、群折射率與損耗。

設(shè)定好之后以Interconnect中的光網(wǎng)絡(luò)分析器(Optical Network Analyzer, ONA)對系統(tǒng)的穿透波進行分析。在ONA源設(shè)定仿真波長為1550到1650nm,共1000個波長點,在DC_2分別用-0.5,0,0.5三電壓條件控制行波電極,可以得到不同電壓下穿透率隨波長的變化,從圖可知在控制電壓改變1V時穿透波長差異僅0.8~0.9nm。

 

接下來將整個形波馬赫-曾德爾調(diào)制器放進眼圖分析系統(tǒng),使用 INTERCONNECT 打開文件 tw_modulator_INTERCONNECT_eye.icp,該文件表示調(diào)制器光子電路以及眼圖測量設(shè)備。用連續(xù)波激光(CW Laser)當光源,控制行波電極的電信號則為一個時間脈沖發(fā)生器,包含偽隨機二元序列(Pseudo-Random Binary Sequence ,PRBS) 訊號搭配不歸零 (Non-return to zero,NRZ) 脈沖發(fā)生器。PRBS信號的比特率設(shè)置為20 Gbits/s,NRZ脈沖發(fā)生器調(diào)制幅度為1 V,參考偏差為-0.5 V(信號范圍在-0.5和0.5 V之間), 激光源功率為10 mW,激光源波長為1552.5nm。

 

激光功率和波長的選擇是相對任意的,在這種情況下,我們選擇的值在眼圖中給出可接受的信噪比,眼圖交叉接近50%來運行仿真。選擇眼圖物件并從結(jié)果視圖窗口可視化眼圖。從同樣的角度來看,眼圖中的消光比為 4.25 dB。

 

最后以Interconnect中的電網(wǎng)絡(luò)分析器(Electrical Network Analyzer ,ENA)對行波電極進行帶寬分析。在設(shè)定30GHz的頻率范圍下,結(jié)果如下圖,3db的帶寬約對應(yīng)15GHz。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉