MOS管的電壓極性和符號規(guī)則
上圖是N溝道MOS管的符號,圖中D是漏極,S是源極,G是柵極,中間的箭頭表示襯底,如果箭頭向里表示是N溝道的MOS管,箭頭向外表示是P溝道的MOS管。
在實際MOS管生產(chǎn)的過程中襯底在出廠前就和源極連接,所以在符號的規(guī)則中;表示襯底的箭頭也必須和源極相連接,以區(qū)別漏極和源極。
上圖是P溝道MOS管的符號。
MOS管應(yīng)用電壓的極性和我們普通的晶體三極管相同,N溝道的類似NPN晶體三極管,漏極D接正極,源極S接負極,柵極G正電壓時導(dǎo)電溝道建立,N溝道MOS管開始工作。
同樣P道的類似PNP晶體三極管,漏極D接負極,源極S接正極,柵極G負電壓時,導(dǎo)電溝道建立,P溝道MOS管開始工作。
5、MOS管和晶體三極管相比的重要特性
1) 場效應(yīng)管的源極S、柵極G、漏極D分別對應(yīng)于三極管的發(fā)射極e、基極b、集電極c,它們的作用相似。
2) 場效應(yīng)管是電壓控制電流器件,由VGS控制ID,普通的晶體三極管是電流控制電流器件,由IB控制IC。MOS管道放大系數(shù)是(跨導(dǎo)gm)當柵極電壓改變一伏時能引起漏極電流變化多少安培。晶體三極管是電流放大系數(shù)(貝塔β)當基極電流改變一毫安時能引起集電極電流變化多少。
3) 場效應(yīng)管柵極和其它電極是絕緣的,不產(chǎn)生電流;而三極管工作時基極電流IB決定集電極電流IC。因此場效應(yīng)管的輸入電阻比三極管的輸入電阻高的多。
4) 場效應(yīng)管只有多數(shù)載流子參與導(dǎo)電;三極管有多數(shù)載流子和少數(shù)載流子兩種載流子參與導(dǎo)電,因少數(shù)載流子濃度受溫度、輻射等因素影響較大,所以場效應(yīng)管比三極管的溫度穩(wěn)定性好。
5) 場效應(yīng)管在源極未與襯底連在一起時,源極和漏極可以互換使用,且特性變化不大,而三極管的集電極與發(fā)射極互換使用時,其特性差異很大,b 值將減小很多。
6) 場效應(yīng)管的噪聲系數(shù)很小,在低噪聲放大電路的輸入級及要求信噪比較高的電路中要選用場效應(yīng)管。
7) 場效應(yīng)管和普通晶體三極管均可組成各種放大電路和開關(guān)電路,但是場效應(yīng)管制造工藝簡單,并且又具有普通晶體三極管不能比擬的優(yōu)秀特性,在各種電路及應(yīng)用中正逐步的取代普通晶體三極管,目前的大規(guī)模和超大規(guī)模集成電路中,已經(jīng)廣泛的采用場效應(yīng)管。
6、在開關(guān)電源電路中,大功率MOS管和大功率晶體三極管相比MOS管的優(yōu)點
1) 輸入阻抗高,驅(qū)動功率小——由于柵源之間是二氧化硅(SiO2)絕緣層,柵源之間的直流電阻基本上就是SiO2絕緣電阻,一般達100MΩ左右,交流輸入阻抗基本上就是輸入電容的容抗。由于輸入阻抗高,對激勵信號不會產(chǎn)生壓降,有電壓就可以驅(qū)動,所以驅(qū)動功率極小(靈敏度高)。一般的晶體三極管必需有基極電壓Vb,再產(chǎn)生基極電流Ib,才能驅(qū)動集電極電流的產(chǎn)生。晶體三極管的驅(qū)動是需要功率的(Vb×Ib)。
2) 開關(guān)速度快——MOSFET的開關(guān)速度和輸入的容性特性的有很大關(guān)系,由于輸入容性特性的存在,使開關(guān)的速度變慢,但是在作為開關(guān)運用時,可降低驅(qū)動電路內(nèi)阻,加快開關(guān)速度(輸入采用了后述的“灌流電路”驅(qū)動,加快了容性的充放電的時間)。MOSFET只靠多子導(dǎo)電,不存在少子儲存效應(yīng),因而關(guān)斷過程非常迅速,開關(guān)時間在10—100ns之間,工作頻率可達100kHz以上,普通的晶體三極管由于少數(shù)載流子的存儲效應(yīng),使開關(guān)總有滯后現(xiàn)象,影響開關(guān)速度的提高(目前采用MOS管的開關(guān)電源其工作頻率可以輕易的做到100K/S~150K/S,這對于普通的大功率晶體三極管來說是難以想象的)。
3) 無二次擊穿——由于普通的功率晶體三極管具有當溫度上升就會導(dǎo)致集電極電流上升(正的溫度~電流特性)的現(xiàn)象,而集電極電流的上升又會導(dǎo)致溫度進一步的上升,溫度進一步的上升,更進一步的導(dǎo)致集電極電流的上升這一惡性循環(huán)。而晶體三極管的耐壓VCEO隨管溫度升高是逐步下降,這就形成了管溫繼續(xù)上升、耐壓繼續(xù)下降最終導(dǎo)致晶體三極管的擊穿,這是一種導(dǎo)致電視機開關(guān)電源管和行輸出管損壞率占95%的破環(huán)性的熱電擊穿現(xiàn)象,也稱為二次擊穿現(xiàn)象。MOS管具有和普通晶體三極管相反的溫度~電流特性,即當管溫度(或環(huán)境溫度)上升時,溝道電流IDS反而下降。例如;一只IDS=10A的MOS FET開關(guān)管,當VGS控制電壓不變時,在250C溫度下IDS=3A,當芯片溫度升高為1000C時,IDS降低到2A,這種因溫度上升而導(dǎo)致溝道電流IDS下降的負溫度電流特性,使之不會產(chǎn)生惡性循環(huán)而熱擊穿。也就是MOS管沒有二次擊穿現(xiàn)象,可見采用MOS管作為開關(guān)管,其開關(guān)管的損壞率大幅度的降低,近兩年電視機開關(guān)電源采用MOS管代替過去的普通晶體三極管后,開關(guān)管損壞率大大降低也是一個極好的證明。
4) MOS管導(dǎo)通后其導(dǎo)通特性呈純阻性——普通晶體三極管在飽和導(dǎo)通是,幾乎是直通,有一個極低的壓降,稱為飽和壓降,既然有一個壓降,那么也就是;普通晶體三極管在飽和導(dǎo)通后等效是一個阻值極小的電阻,但是這個等效的電阻是一個非線性的電阻(電阻上的電壓和流過的電流不能符合歐姆定律),而MOS管作為開關(guān)管應(yīng)用,在飽和導(dǎo)通后也存在一個阻值極小的電阻,但是這個電阻等效一個線性電阻,其電阻的阻值和兩端的電壓降和流過的電流符合歐姆定律的關(guān)系,電流大壓降就大,電流小壓降就小,導(dǎo)通后既然等效是一個線性元件,線性元件就可以并聯(lián)應(yīng)用,當這樣兩個電阻并聯(lián)在一起,就有一個自動電流平衡的作用,所以MOS管在一個管子功率不夠的時候,可以多管并聯(lián)應(yīng)用,且不必另外增加平衡措施(非線性器件是不能直接并聯(lián)應(yīng)用的)。
MOS管和普通的晶體三極管相比,有以上四項優(yōu)點,就足以使MOS管在開關(guān)運用狀態(tài)下完全取代普通的晶體三極管。目前的技術(shù)MOS管道VDS能做到1000V,只能作為開關(guān)電源的開關(guān)管應(yīng)用,隨著制造工藝的不斷進步,VDS的不斷提高,取代顯像管電視機的行輸出管也是近期能實現(xiàn)的。
什么是灌流電路
1、MOS管作為開關(guān)管應(yīng)用的特殊驅(qū)動電路
MOS管和普通晶體三極管相比,有諸多的優(yōu)點,但是在作為大功率開關(guān)管應(yīng)用時,由于MOS管具有的容性輸入特性,MOS管的輸入端,等于是一個小電容器,輸入的開關(guān)激勵信號,實際上是在對這個電容進行反復(fù)的充電、放電的過程,在充放電的過程中,使MOS管道導(dǎo)通和關(guān)閉產(chǎn)生了滯后,使“開”與“關(guān)”的過程變慢,這是開關(guān)元件不能允許的(功耗增加,燒壞開關(guān)管)。
壓波形變成B的畸變波形,導(dǎo)致開關(guān)管不能正常開關(guān)工作而損壞,解決的方法就是,只要R足夠的小,甚至沒有阻值,激勵信號能提供足夠的電流,就能使等效電容迅速的充電、放電,這樣MOS開關(guān)管就能迅速的“開”、“關(guān)”,保證了正常工作。由于激勵信號是有內(nèi)阻的,信號的激勵電流也是有限度,我們在作為開關(guān)管的MOS管的輸入部分,增加一個減少內(nèi)阻、增加激勵電流的“灌流電路”來解決此問題,如下圖所示。
上圖中,在作為開關(guān)應(yīng)用的MOS管Q3的柵極S和激勵信號之間增加Q1、Q2兩只開關(guān)管,此兩只管均為普通的晶體三極管,兩只管接成串聯(lián)連接,Q1為NPN型Q2為PNP型,基極連接在一起(實際上是一個PNP、NPN互補的射極跟隨器),兩只管等效是兩只在方波激勵信號控制下輪流導(dǎo)通的開關(guān),如下圖A和B。
當激勵方波信號的正半周來到時;晶體三極管Q1(NPN)導(dǎo)通、Q2(PNP)截止,VCC經(jīng)過Q1導(dǎo)通對MOS開關(guān)管Q3的柵極充電,由于Q1是飽和導(dǎo)通,VCC等效是直接加到MOS管Q3的柵極,瞬間充電電流極大,充電時間極短,保證了MOS開關(guān)管Q3的迅速的“開”,如圖A所示(圖A和圖B中的電容C為MOS管柵極S的等效電容)。
當激勵方波信號的負半周來到時;晶體三極管Q1(NPN)截止、Q2(PNP)導(dǎo)通,MOS開關(guān)管Q3的柵極所充的電荷,經(jīng)過Q2迅速放電,由于Q2是飽和導(dǎo)通,放電時間極短,保證了MOS開關(guān)管Q3的迅速的“關(guān)”,如上圖B所示。
由于MOS管在制造工藝上柵極S的引線的電流容量有一定的限度,所以在Q1在飽和導(dǎo)通時VCC對MOS管柵極S的瞬時充電電流巨大,極易損壞MOS管的輸入端,為了保護MOS管的安全,在具體的電路中必須采取措施限制瞬時充電的電流值,在柵極充電的電路中串接一個適當?shù)某潆娤蘖麟娮鑂,如下圖A所示。
充電限流電阻R的阻值的選取;要根據(jù)MOS管的輸入電容的大小,激勵脈沖的頻率及灌流電路的VCC(VCC一般為12V)的大小決定一般在數(shù)十姆歐到一百歐姆之間。
由于充電限流電阻的增加,使在激勵方波負半周時Q2導(dǎo)通時放電的速度受到限制(充電時是VCC產(chǎn)生電流,放電時是柵極所充的電壓VGS產(chǎn)生電流,VGS遠遠小于VCC,R的存在大大的降低了放電的速率)使MOS管的開關(guān)特性變壞,為了使R阻值在放電時不影響迅速放電的速率,在充電限流電阻R上并聯(lián)一個形成放電通路的二極管D,上圖B所示。此二極管在放電時導(dǎo)通,在充電時反偏截止。這樣增加了充電限流電阻和放電二極管后,既保證了MOS管的安全,又保證了MOS管,“開”與“關(guān)”的迅速動作。
2、另一種灌流電路
灌流電路的另外一種形式,對于某些功率較小的開關(guān)電源上采用的MOS管往往采用了下圖A的電路方式。
圖中 D為充電二極管,Q為放電三極管(PNP)。工作過程是這樣,當激勵方波正半周時,D導(dǎo)通,對MOS管輸入端等效電容充電(此時Q截止),在當激勵方波負半周時,D截止,Q導(dǎo)通,MOS管柵極S所充電荷,通過Q放電,MOS管完成“開”與“關(guān)”的動作,如上圖B所示。此電路由激勵信號直接“灌流”,激勵信號源要求內(nèi)阻較低。該電路一般應(yīng)用在功率較小的開關(guān)電源上。
3、MOS管開關(guān)應(yīng)用必須設(shè)置泄放電阻
MOS管在開關(guān)狀態(tài)工作時;Q1、Q2是輪流導(dǎo)通,MOS管柵極是在反復(fù)充電、放電的狀態(tài),如果在此時關(guān)閉電源,MOS管的柵極就有兩種狀態(tài);一個狀態(tài)是;放電狀態(tài),柵極等效電容沒有電荷存儲,一個狀態(tài)是;充電狀態(tài),柵極等效電容正好處于電荷充滿狀態(tài),如下圖A所示。
雖然電源切斷,此時Q1、Q2也都處于斷開狀態(tài),電荷沒有釋放的回路,MOS管柵極的電場仍然存在(能保持很長時間),建立導(dǎo)電溝道的條件并沒有消失。這樣在再次開機瞬間,由于激勵信號還沒有建立,而開機瞬間MOS管的漏極電源(VDS)隨機提供,在導(dǎo)電溝道的作用下,MOS管即刻產(chǎn)生不受控的巨大漏極電流ID,引起MOS管燒壞。
為了避免此現(xiàn)象產(chǎn)生,在MOS管的柵極對源極并接一只泄放電阻R1,如下圖B所示,關(guān)機后柵極存儲的電荷通過R1迅速釋放,此電阻的阻值不可太大,以保證電荷的迅速釋放,一般在5K~數(shù)10K左右。
灌流電路主要是針對MOS管在作為開關(guān)管運用時其容性的輸入特性,引起“開”、“關(guān)”動作滯后而設(shè)置的電路,當MOS管作為其他用途;例如線性放大等應(yīng)用,就沒有必要設(shè)置灌流電路。
實例應(yīng)用電路分析
初步的了解了以上的關(guān)于MOS管的一些知識后,一般的就可以簡單的分析,采用MOS管開關(guān)電源的電路了。
1、 三星等離子V2屏開關(guān)電源PFC部分激勵電路分析
(圖1:三星V2屏開關(guān)電源 - PFC電源部分電原理圖)
(圖2:圖1的等效電路框圖)
圖1所示,是三星V2屏等離子開關(guān)電源的PFC激勵部分。從圖中可以看出;這是一個并聯(lián)開關(guān)電源L1是儲能電感,D10是這個開關(guān)電源的整流二極管,Q1、Q2是開關(guān)管,為了保證PFC開關(guān)電源有足夠的功率輸出,采用了兩只MOS管Q1、Q2并聯(lián)應(yīng)用(圖2所示;是該并聯(lián)開關(guān)電源等效電路圖,圖中可以看出該并聯(lián)開關(guān)電源是加在整流橋堆和濾波電容C5之間的),圖中Q3、Q4是灌流激勵管,Q3、Q4的基極輸入開關(guān)激勵信號, VCC-S-R是Q3、Q4的VCC供電(22.5V)。
兩只開關(guān)管Q1、Q2的柵極分別有各自的充電限流電阻和放電二極管,R16是Q2的在激烈信號為正半周時的對Q2柵極等效電容充電的限流電阻,D7是Q2在激烈信號為負半周時的Q2柵極等效電容放電的放電二極管,同樣R14、D6則是Q1的充電限流電阻和放電的放電二極管。R17和R18是Q1和Q2的關(guān)機柵極電荷泄放電阻。D9是開機瞬間浪涌電流分流二極管。
2、 三星等離子V4屏開關(guān)電源PFC部分激勵電路分析
下圖所示,是三星V4屏開關(guān)電源PFC激勵部分電原理圖,可以看出該V4屏電路激勵部分原理相同于V2屏。只是在每一只大功率MOS開關(guān)管的柵極泄放電阻(R209、R206)上又并聯(lián)了過壓保護二極管:ZD202、ZD201及ZD204、ZD203。
3、 海信液晶開關(guān)電源PFC部分激勵電路分析
海信液晶電視32寸~46寸均采用該開關(guān)電源,電源采用了復(fù)合集成電路SMA—E1017(PFC和PWM共用一塊復(fù)合激勵集成電路),同樣該PFC開關(guān)電源部分也是一個并聯(lián)的開關(guān)電源,圖3-4所示。TE001是儲能電感、DE004是開關(guān)電源的整流管、QE001、QE002是兩只并聯(lián)的大功率MOS開關(guān)管。該集成電路的PFCOUTPUT端子是激勵輸出,,RE008、RE009、RE010、VE001、DE002、RE011、DE003組成QE001和QE002的灌流電路。
下圖所示為灌流電路的等效電路,從圖中,可以清晰的看出該灌流電路的原理及各個元件的作用。
從等效電路圖來分析,集成電路的激勵輸出端(PFCOUTPUT端子),輸出方波的正半周時DE002導(dǎo)通,經(jīng)過RE008、RE010對MOS開關(guān)管QE001和QE002的柵極充電,當激勵端為負半周時,DE002截止,由于晶體三極管VE001是PNP型,負半周信號致使VE001導(dǎo)通,此時;QE001和QE002的柵極所充電荷經(jīng)過VE001放電,MOS管完成“開”、“關(guān)”周期的工作。從圖3-5的分析中,RE011作用是充電的限流電阻,而在放電時由于VE001的存在和導(dǎo)通,已經(jīng)建立了放電的回路,DE003的作用是加速VE001的導(dǎo)通,開關(guān)管關(guān)閉更加迅速。
開頭的圖所示的是原理圖是PFC開關(guān)電源及PWM開關(guān)電源的電原理圖,該電路中的集成電路MSA-E1017是把PFC部分的激勵控制和PWM部分激勵控制復(fù)合在一塊集成電路中,下圖是原理框圖,圖中的QE003及TE002是PWM開關(guān)電源的開關(guān)管及開關(guān)變壓器,RE050是QE003的充電限流電阻、DE020是其放電二極管。