關(guān)閉

電源

所屬頻道 電源
  • 在完全工作條件下進(jìn)行測(cè)試之前測(cè)量您的 LLC 諧振回路

    半橋串聯(lián)諧振轉(zhuǎn)換器可實(shí)現(xiàn) 100 W 以上轉(zhuǎn)換器的高效率和高功率密度。最常見(jiàn)的諧振拓?fù)?圖 1)是由串聯(lián)磁化電感器組成的諧振回路;諧振電感;和一個(gè)電容器(縮寫(xiě)為 LLC)。參數(shù)值的選擇決定了諧振回路增益曲線的形狀,這會(huì)影響諧振轉(zhuǎn)換器在系統(tǒng)中的性能。

  • 通過(guò)加權(quán)電壓反饋減少電壓變化

    變壓器衍生的拓?fù)?例如反激式)允許電源通過(guò)向變壓器添加次級(jí)繞組來(lái)輕松創(chuàng)建多個(gè)輸出電壓。這就造成了您必須選擇要調(diào)節(jié)的輸出電壓的情況,這并不總是那么容易。它可能是具有最高功率的輸出,或者是需要嚴(yán)格調(diào)節(jié)的低壓輸出。

  • 實(shí)現(xiàn)多相降壓轉(zhuǎn)換器的負(fù)載線控制

    每一代新服務(wù)器都需要更高的計(jì)算能力和效率,同時(shí)也增加了功耗要求。確保服務(wù)器滿足市場(chǎng)需求的關(guān)鍵方面之一是了解微處理器的電源對(duì)整個(gè)服務(wù)器的動(dòng)態(tài)響應(yīng)和效率的影響。這使得工程師能夠配置電源以獲得最佳性能。

  • 使用 SSCB 保護(hù)現(xiàn)代高壓直流系統(tǒng)的優(yōu)點(diǎn)

    各種應(yīng)用中不斷提高系統(tǒng)效率和功率密度的趨勢(shì)導(dǎo)致了更高的直流系統(tǒng)電壓。然而,傳統(tǒng)的電路保護(hù)解決方案不足以有效保護(hù)這些高壓配電系統(tǒng),同時(shí)保持高可靠性和安全性。

    電源
    2024-12-20
  • 使用雙向 DCDC 穩(wěn)壓器和超級(jí)電容器充電器維持總線電壓

    LTC3110 雙向降壓-升壓型 DC/DC 穩(wěn)壓器在存在總線電壓(例如 3.3V)時(shí)對(duì)超級(jí)電容器進(jìn)行充電和平衡,并在總線發(fā)生故障時(shí)將超級(jí)電容器放電到負(fù)載中。即使超級(jí)電容器電壓高于或低于標(biāo)稱總線電壓,LTC3110 也能維持總線的標(biāo)稱電平。通過(guò)這種方式支持負(fù)載,可以在電源中斷期間進(jìn)行數(shù)據(jù)備份和保留,這對(duì)于各種工業(yè)和汽車應(yīng)用都很重要。

  • 通過(guò)簡(jiǎn)單的電路增加壓電換能器的聲輸出

    為了增加壓電蜂鳴器或超聲波換能器的聲輸出,已經(jīng)提出了許多不同的想法。其中大多數(shù)涉及相當(dāng)復(fù)雜的電路,從而增加了解決方案的總成本;例如將低壓邏輯電源升壓到更高的電壓或使用H橋拓?fù)洹?/p>

  • 為什么電流感應(yīng)對(duì)于協(xié)作移動(dòng)機(jī)器人來(lái)說(shuō)是必須的

    機(jī)器人在制造和倉(cāng)儲(chǔ)設(shè)施中越來(lái)越普遍。工廠正在擴(kuò)大移動(dòng)機(jī)器人的使用,以幫助在無(wú)需人工干預(yù)的情況下自動(dòng)將物品從 A 點(diǎn)移動(dòng)到 B 點(diǎn),同時(shí)還擴(kuò)大協(xié)作機(jī)器人的使用,以提高工作效率并減少工人的疲勞。電流傳感在移動(dòng)機(jī)器人和協(xié)作機(jī)器人中發(fā)揮著關(guān)鍵作用,有助于實(shí)現(xiàn)這些優(yōu)勢(shì)。

  • 優(yōu)化有源鉗位反激式設(shè)計(jì)的效率

    隨著電子設(shè)備對(duì)在更小的封裝中進(jìn)行更多處理的需求不斷增長(zhǎng),當(dāng)今任何電源的首要任務(wù)都是功率密度。最流行的隔離式電源拓?fù)涫欠醇な?,但傳統(tǒng)反激式的漏電和開(kāi)關(guān)損耗限制了開(kāi)關(guān)頻率并阻礙了實(shí)現(xiàn)小解決方案尺寸的能力。幸運(yùn)的是,有新的方法可以優(yōu)化反激式拓?fù)?,以產(chǎn)生更高的效率,即使以更高的頻率進(jìn)行開(kāi)關(guān)也是如此。

  • 最大限度減少開(kāi)關(guān)電路中有害 dVdt 瞬態(tài)的 3 種方法

    電源轉(zhuǎn)換或柵極驅(qū)動(dòng)開(kāi)關(guān)期間產(chǎn)生的高壓瞬態(tài)尖峰可能非常有害。在電機(jī)驅(qū)動(dòng)應(yīng)用中,隨時(shí)間變化的電壓導(dǎo)數(shù) (dV/dt) 瞬態(tài)可能會(huì)破壞繞組絕緣,從而縮短電機(jī)壽命并影響系統(tǒng)可靠性。

  • 對(duì)稱半橋電路在雙向隔離DCDC變換器中的需求

    在電力電子領(lǐng)域中,對(duì)稱半橋電路因其結(jié)構(gòu)簡(jiǎn)單、效率高和可靠性強(qiáng)等優(yōu)點(diǎn),被廣泛應(yīng)用于各種電力變換場(chǎng)合。隨著新能源和分布式發(fā)電系統(tǒng)的發(fā)展,雙向直流-直流(DC-DC)變換器在能量存儲(chǔ)系統(tǒng)、電動(dòng)汽車和太陽(yáng)能光伏系統(tǒng)等領(lǐng)域的需求日益增加。

  • 高頻諧振轉(zhuǎn)換器設(shè)計(jì)注意事項(xiàng)

    高頻諧振轉(zhuǎn)換器設(shè)計(jì)考慮因素包括組件選擇、寄生參數(shù)設(shè)計(jì)、同步整流器設(shè)計(jì)和電壓增益設(shè)計(jì)。本電源技巧重點(diǎn)關(guān)注影響開(kāi)關(guān)元件選擇的關(guān)鍵參數(shù),以及高頻諧振轉(zhuǎn)換器中變壓器繞組內(nèi)電容的影響。

  • 將 FET 用于電壓控制電路的指南,第 3 部分

    如果我們將前面圖 3 至圖 17 中任何一個(gè)中的電位器 VR1 替換為交流信號(hào)加直流偏置信號(hào),壓控衰減器就可以變成幅度調(diào)制器電路。例如,在圖 15(P 溝道 MOSFET)中,如果輸入信號(hào) Vin 是高頻載波信號(hào)和 VR1 的信號(hào) Vcont 替換為負(fù)直流偏置信號(hào)加低頻正弦波信號(hào),則輸出信號(hào) Vout 將具有如圖18所示的調(diào)幅載波信號(hào)。

    電源
    2024-12-17
  • 內(nèi)部電源的安裝注意事項(xiàng)

    交流/直流電源可分為兩個(gè)主要系列之一:內(nèi)部電源或外部電源。內(nèi)部電源是將作為組件安裝在某些終端設(shè)備內(nèi)的電源;外部電源作為獨(dú)立的子組件伴隨終端設(shè)備。內(nèi)部和外部電源在成功實(shí)現(xiàn)電源作為最終系統(tǒng)的一個(gè)元素所需的工程工作量方面差異很大。

  • 如何降低 PFC 的 THD

    在電力系統(tǒng)中,這些諧波可能會(huì)導(dǎo)致電話傳輸干擾和導(dǎo)體老化等問(wèn)題。因此,控制總THD非常重要。較低的 THD 意味著較低的峰值電流、較少的發(fā)熱、較低的電磁輻射以及較低的電機(jī)鐵芯損耗。

    電源
    2024-12-17
  • 如何實(shí)現(xiàn)隔離電源的低待機(jī)功耗

    許多電源,尤其是離線電源,都需要較低的待機(jī)功耗。對(duì)于低于 100 W 的功率水平,最具成本效益的隔離拓?fù)涫欠醇な剑驗(yàn)樗枰慕M件最少。反激式轉(zhuǎn)換器通常會(huì)產(chǎn)生多個(gè)次級(jí)輸出,這需要相對(duì)精確的調(diào)節(jié)。本文將描述在實(shí)現(xiàn)良好調(diào)節(jié)的輸出電壓的同時(shí)仍實(shí)現(xiàn)低待機(jī)功耗的挑戰(zhàn)。

關(guān)注他的人
  • Verilog12

  • wh1988

  • caomuxiaozi

  • yyffwasd

  • JLnny

  • 18713271819cxy

  • rainbow9527

  • 王洪陽(yáng)

  • wxy1198

  • yifeidengdai

  • 小愛(ài)電源

  • hsj1998

  • hugewinner

  • zrddyhm

  • 越陌度遷

  • hefei12

  • BOB50842221

  • 佳木秀

  • 709051457

  • llaaqqq

  • 大流士云

  • TysonZheng

  • 影子念

  • sailqihang

  • xyhaliyou

  • 感應(yīng)加熱技術(shù)

  • 13827430715

  • Powerxys

  • zjgaojian

  • gaojian19961214