當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]經(jīng)過仿真和實(shí)際測試,發(fā)現(xiàn)介質(zhì)基板,封裝材料的相對介電常數(shù)和材料的厚度對天線諧振頻率點(diǎn)都有較大影響。即諧振頻率點(diǎn)隨著介電常數(shù)和基板厚度的增大而減小,對于分形天線,它們只影響諧振頻點(diǎn)的下降,但不會影響各個(gè)諧振頻點(diǎn)的相對位置。也就是說,分形天線具有多諧振點(diǎn)特征,但是多個(gè)諧振頻率之間的關(guān)系是由分形的結(jié)構(gòu)確定的,而不是由材料的介電常數(shù)和介質(zhì)厚度確定的。相對介電常數(shù)和材料的厚度對天線的輻射方向圖和天線增益不產(chǎn)生影響, 這種性質(zhì)也可用于天線小型化的設(shè)計(jì)中。

1 引 言

射頻識別(RFID)基本系統(tǒng)由兩部分組成:讀寫器和電子標(biāo)簽。根據(jù)電子標(biāo)簽工作時(shí)的供電方式不同,將RFID系統(tǒng)分為無源RFID系統(tǒng)、半無源RFID系統(tǒng)和有源RFID系統(tǒng)。無源RFID系統(tǒng)的電子標(biāo)簽即稱為無源電子標(biāo)簽,目前的典型結(jié)構(gòu)是由標(biāo)簽芯片、標(biāo)簽天線和標(biāo)簽基板三部分組成。無源電子標(biāo)簽的應(yīng)用常常附著于待識別物品的表面,甚至嵌入待識別物品內(nèi)部或包裝層中。為適合應(yīng)用需求的多樣性要求,無源電子標(biāo)簽的小型化設(shè)計(jì)、變形化設(shè)計(jì)是電子標(biāo)簽設(shè)計(jì)主要方面。無源電子標(biāo)簽的外形主要決定于標(biāo)簽天線的外形,因而標(biāo)簽天線的設(shè)計(jì)在很大程度上決定著標(biāo)簽芯片性能的發(fā)揮。

無源電子標(biāo)簽工作的前提條件是標(biāo)簽芯片獲得能量必須超過芯片工作的最小門限功率Pmin,也稱其為無源電子標(biāo)簽的靈敏度。因而,為了提高無源電子標(biāo)簽在給定讀寫器場強(qiáng)下的有效閱讀距離,從標(biāo)簽天線設(shè)計(jì)角度應(yīng)盡可能達(dá)到標(biāo)簽天線阻抗在工作頻帶內(nèi)與標(biāo)簽芯片阻抗的最佳匹配,以實(shí)現(xiàn)標(biāo)簽天線在讀寫器場中向標(biāo)簽芯片傳送最大的功率。文獻(xiàn)[1]對這樣的技術(shù)做了全面總結(jié)。標(biāo)簽天線設(shè)計(jì)的基本思路即是改變天線的阻抗曲線,匹配標(biāo)簽芯片的阻抗曲線。具體的實(shí)現(xiàn)方法可歸結(jié)為天線的各種加載技術(shù)。典型的加載方法有:利用集總元件加載;利用介質(zhì)材料加載;利用短路技術(shù)加載;利用天線的周圍環(huán)境加載;利用天線的彎折或孔徑變化實(shí)現(xiàn)加載。其實(shí),這種改變天線結(jié)構(gòu)的加載技術(shù)和分形天線的基本思想是一致的,而分形天線的設(shè)計(jì)思想又源于分形幾何或分形理論的發(fā)展。

分形理論是由Manderblot于1975年提出的。分形結(jié)構(gòu)的結(jié)構(gòu)體一般都具有比例自相似特性和空間填充特性。在天線設(shè)計(jì)中,利用分形結(jié)構(gòu)的比例自相似和空間填充性的特點(diǎn)可實(shí)現(xiàn)標(biāo)簽天線的尺寸縮減和寬頻帶特性。

本文基于上述思想,設(shè)計(jì)了一款基于Hilbert分形結(jié)構(gòu)的電子標(biāo)簽天線,并研究了標(biāo)簽天線基板相對介電常數(shù)和厚度對標(biāo)簽天線性能的影響情況。

2 Hilbert分形迭代原理

Hilbert分形具有松散的自相似特性:0階Hilbert是一個(gè)正方形輪廓的“半環(huán)”結(jié)構(gòu),設(shè)其邊長為b,1階是用0階的結(jié)構(gòu)來填充每條邊,從而在每條邊上形成“半環(huán)”結(jié)構(gòu),設(shè)其邊長為a,稱a/6稱為Hilbert分形的比例系數(shù),如圖1所示。

由圖1可見,1,2,3,…,n階Hilbert分形的輪廓面積與0階的完全一致,即無論迭代多少次,Hilbert分形的輪廓面積保持不變,且始終只有2個(gè)端點(diǎn)。

分析可得,n階Hilber分形的總長度可由如下式(1)算得。例如:n取0,1,2,3時(shí),分別為:3b,5b,9b,17b。

Vinoy等人在文獻(xiàn)[2,3]中詳細(xì)探討了Hilbert曲線在設(shè)計(jì)緊湊型諧振天線應(yīng)用中發(fā)現(xiàn),Hilbert分形天線的尺寸減小到λ/10時(shí),性能卻同λ/2偶極子相似。而Zhu在文獻(xiàn)[4]中研究了饋點(diǎn)位置對Hilbert分形天線輸入阻抗的影響,結(jié)果發(fā)現(xiàn),無論迭代的次數(shù)多少,中心饋電的輻射電阻很小,但恰當(dāng)?shù)剡x擇偏心饋電總能提供50 Ω的匹配阻抗。

3 天線基板介電常數(shù)和厚度對天線性能影響的研究

在電子標(biāo)簽的實(shí)際應(yīng)用中,電子標(biāo)簽一般是密封的。天線的尺寸與形狀、蝕刻基板材料和外圍封包材料的介電常數(shù)與厚度,都會對天線的性能產(chǎn)生不可忽略的影響。因而,在電子標(biāo)簽的設(shè)計(jì)中,必須考慮以上因素的影響。

圖2給出了一個(gè)2階Hilbert分形天線的設(shè)計(jì)實(shí)例。其中比例系數(shù)a/b=4/11,天線的尺寸為50 mm×24 mm,線寬為1 mm。布局按照對稱偶極子分布。標(biāo)簽中所采用標(biāo)簽芯片的參數(shù),在915 MHz時(shí),芯片對外呈現(xiàn)的阻抗為ZL=18.1-j149 Ω。在不考慮介質(zhì)板的影響下,則仿真結(jié)果如圖3所示。

從圖3可以看到,天線諧振在0.93 GHz和1.87 GHz二個(gè)頻點(diǎn)。分別在兩個(gè)諧振點(diǎn)上分析天線的方向圖特性(E面),可得如圖4和圖5所示的結(jié)果。

從圖4可以看到,在第一個(gè)諧振頻點(diǎn)上,天線的方向圖和偶極子基本相同,具有全向輻射特性;在第二個(gè)諧振頻點(diǎn)上,天線的方向圖則發(fā)生了90°的扭轉(zhuǎn)??疾榈谝粋€(gè)諧振頻點(diǎn)的天線尺寸情況:該天線的長度為100 mm,若采用普通偶極子則長度約為160 mm。由此可以看到,基于Hilbert分形結(jié)構(gòu)的天線尺寸縮小了37.5%。

此外,研究發(fā)現(xiàn)這樣的分形偶極子天線,不需要另外設(shè)計(jì)匹配加載單元。由此也驗(yàn)證了分形天線不僅具有多頻帶特性和尺寸縮減特性,而且具有自加載特性。

3.1 基板材料介電常數(shù)對天線性能影響的研究

對于電子標(biāo)簽,一般制作工藝,都是將天線蝕刻在某種基板上,這樣基板的介電常數(shù)將會影響天線的性能。這里選擇基板的厚度為0.2 mm保持不變,研究不同的基板相對介電常數(shù)對天線性能的影響情況。

選擇相對介電常數(shù)的取值依次為:1,3.4,4.4,5.4,仿真算得的回波損耗情況如圖6所示,方向圖的情況如圖7所示。

圖6中,最右側(cè)的諧振點(diǎn)(紅線)表示空氣中的介電常數(shù)情況,隨著相對介電常數(shù)的增大,諧振頻率在減小。不同相對介電常數(shù)下兩諧振點(diǎn)的頻率比值約為1.85,基本維持不變。由此可以確定,介電常數(shù)不影響分形天線諧振頻點(diǎn)的分布,諧振頻點(diǎn)的分布是由天線的結(jié)構(gòu)決定的。不同介電常數(shù)的S11曲線只是沿著頻率軸發(fā)生了平移,但曲線的形狀近乎相同。

圖7是不同相對介電常數(shù)在第一頻點(diǎn)的輻射方向圖,由圖7可見,相對介電常數(shù)的大小對相同結(jié)構(gòu)的天線方向圖不產(chǎn)生影響。

3.2 基板厚度對天線性能影響的研究

由于天線是蝕刻在基板上的,考慮到電子標(biāo)簽應(yīng)用的便攜性和制作的成本,在保證天線具有良好性能的條件下,選擇適當(dāng)?shù)幕搴穸仁潜匾?。這里假設(shè)相對介電常數(shù)為4.4保持不變。

圖8繪制了在空氣中,基板厚度分別為0,0.2,0.4,0.6和0.8 mm時(shí)的反射系數(shù)曲線,從圖8可以看到,隨著基板厚度的增加,天線的諧振頻率點(diǎn)也有所下降,且曲線的形狀保持不變,只是沿著頻率軸左移。從圖8和圖6的對比不難發(fā)現(xiàn),基板厚度的變化,對第二諧振頻率點(diǎn)的反射系數(shù)的影響不大,而相對介電常數(shù)的變化在使諧振頻率減小的同時(shí),對第二諧振頻點(diǎn)的反射系數(shù)影響較大。介質(zhì)厚度對天線輻射圖的影響如圖9所示。

從表1可以看到,高頻點(diǎn)與低頻點(diǎn)的比值也約為1.85,保持恒定,可說明天線諧振點(diǎn)的分布也不是由基板厚度決定而是由天線的結(jié)構(gòu)決定的。

3.3 外圍封裝材料對天線的影響

當(dāng)標(biāo)簽天線設(shè)計(jì)之后,在實(shí)際應(yīng)用中,需要將電子標(biāo)簽封裝起來使用。這樣,封裝材料的介電常數(shù)和厚度也會對天線性能產(chǎn)生一定的影響。有關(guān)這種影響的定量分析,可采用與以上分析類似的方法建模仿真并通過實(shí)測檢驗(yàn)。

4 實(shí)際應(yīng)用

本文根據(jù)Hilbert分形的原理設(shè)計(jì)了如圖2所示的電子標(biāo)簽,第一諧振頻率為0.93 GHz,但是未考慮基板材料的影響。這樣,將天線蝕刻在相對介電常數(shù)為4.4,厚度為0.2 mm的FR4材料上,用遠(yuǎn)望谷公司的XCRF-804閱讀器讀得距離約0.5 m左右(功率20 dBm)。鑒于此將天線結(jié)構(gòu)進(jìn)行改進(jìn),如圖10(b)所示。

這里,基板采用相對介電常數(shù)為4.4,厚度為0.2 mm的FR4-epoxy,從圖10可以看到,由于外界材料的影響,天線的尺寸逐漸減小。

從圖11可以看到,天線在諧振頻率0.915 GHz處的S11=-214.71 dB,而且具有較好的帶寬,駐波比為1.12,天線的輻射方向圖依然具有普通偶極子的低方向性。經(jīng)過實(shí)際測試,在20 dBm的功率條件下,閱讀距離可以達(dá)到4 m左右,與仿真不帶介質(zhì)基板的天線相比,閱讀距離有了很大提高,但是如果進(jìn)行包裝測試,則效果又會很差,這樣,就必須進(jìn)一步修改天線的尺寸。這里,基板的采用相對介電常數(shù)為4.4,厚度為0.2 mm的FR4-epoxy,實(shí)際中的封裝材料為TPU,這里采用相對介電常數(shù)為4的Polyimidequartz近似。天線上表面的厚度為1 mm,下表面的厚度為0.7 mm,如圖10(c)所示模型。仿真結(jié)果如圖12所示。

從圖12可以看到,反射系數(shù)為S11=-31.41 dB,,帶寬有了更進(jìn)一步提高。駐波比在諧振頻率處為1.06,可以看到,在諧振頻率915 MHz處,標(biāo)簽天線和標(biāo)簽芯片實(shí)現(xiàn)了較好的共軛匹配,而且方向圖幾乎沒有變化。

從上面的仿真結(jié)果可以看出,盡管電子標(biāo)簽的阻抗匹配,帶寬和輻射方向都很好,但是從仿真結(jié)果可以發(fā)現(xiàn),天線的增益很小約-4 dB,所以,在要求較高的條件下使用時(shí),還必須對天線進(jìn)行修改,以提高天線的增益。

5 結(jié)語

電子標(biāo)簽設(shè)計(jì)中,綜合考慮基板材料、封裝材料對天線的影響是必要的。在仿真中考慮這些因素,可以減少在實(shí)際調(diào)試中對天線結(jié)構(gòu)的修改。

經(jīng)過仿真和實(shí)際測試,發(fā)現(xiàn)介質(zhì)基板,封裝材料的相對介電常數(shù)和材料的厚度對天線諧振頻率點(diǎn)都有較大影響。即諧振頻率點(diǎn)隨著介電常數(shù)和基板厚度的增大而減小,對于分形天線,它們只影響諧振頻點(diǎn)的下降,但不會影響各個(gè)諧振頻點(diǎn)的相對位置。也就是說,分形天線具有多諧振點(diǎn)特征,但是多個(gè)諧振頻率之間的關(guān)系是由分形的結(jié)構(gòu)確定的,而不是由材料的介電常數(shù)和介質(zhì)厚度確定的。相對介電常數(shù)和材料的厚度對天線的輻射方向圖和天線增益不產(chǎn)生影響, 這種性質(zhì)也可用于天線小型化的設(shè)計(jì)中。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉