高速Σ-ΔADC的誤差校正方法研究
1 概述
Σ-Δ調(diào)制是目前國際上的A/D轉(zhuǎn)換器設(shè)計(jì)中很受歡迎的一種技術(shù),與傳統(tǒng)的Nyquist頻率采樣的A/D轉(zhuǎn)換器工作原理有所不同,采用的是過采樣和低位量化結(jié)合的方法。其中,過采樣技術(shù)在模/數(shù)混合電路中的應(yīng)用,能夠避免傳統(tǒng)A/D或D/A轉(zhuǎn)換方法實(shí)現(xiàn)中遇到的諸多困難,尤其是在對(duì)低頻信號(hào)要求高分辨率的應(yīng)用領(lǐng)域,傳統(tǒng)轉(zhuǎn)換方法需要較高精度的模擬結(jié)構(gòu)(模擬電阻、電容等),從而使整個(gè)A/D轉(zhuǎn)換器的成本很高。Σ-ΔADC能夠避免使用高精度模擬電路,將噪聲推向高頻,具有分辨率高,量化結(jié)構(gòu)簡單等優(yōu)點(diǎn)。由于電磁環(huán)境日益惡化,對(duì)接收機(jī)的動(dòng)態(tài)范圍要求越來越高,跳頻、擴(kuò)頻等寬帶信號(hào)的應(yīng)用又要求使用寬帶測(cè)量設(shè)備,這些都對(duì)ADC的分辨率和速度提出了更高的要求。
調(diào)制器(Modulator)屬于Σ-ΔADC電路中的模擬電路部分,它的結(jié)構(gòu)選擇和電路參數(shù)設(shè)計(jì)都極大地影響著整個(gè)ADC的信噪比(SNR)等性能指標(biāo)。在Σ-Δ調(diào)制器中,使用了過采樣、噪聲成形等關(guān)鍵技術(shù)。這些技術(shù)還使它另外具有一系列固有的優(yōu)點(diǎn),如易于與數(shù)字信號(hào)處理系統(tǒng)單片集成,無須采樣保持電路,對(duì)輸入端抗混迭濾波器要求很低等。下面先討論過采樣與MASH噪聲成形的主要單元分析,最后針對(duì)DAC失真誤差,設(shè)計(jì)并仿真了一種數(shù)字誤差校正技術(shù)。
2 基本原理與技術(shù)
2.1 Σ-ΔADC基本原理及調(diào)制器的組成
Σ-ΔADC由兩部分組成:調(diào)制器和數(shù)字抽取濾波器。其中調(diào)制器的工作原理是采用遠(yuǎn)遠(yuǎn)大于Nyquist頻率的時(shí)鐘對(duì)輸入模擬信號(hào)進(jìn)行”過采樣”,采樣頻率與Nyquist頻率之比定義為過采樣率M,是調(diào)制器的重要結(jié)構(gòu)參數(shù)之一。由于采樣頻率很高,則無需傳統(tǒng)的PCMADC中的保持電路。采樣后的信號(hào)與前一時(shí)刻的采樣信號(hào)相比較,對(duì)其差值做出低位量化,輸出低位碼流,并根據(jù)量化器的輸出決定返回+Δ或-Δ反饋信號(hào)。調(diào)制器的基本結(jié)構(gòu)如圖1所示,主要由采樣環(huán)節(jié)、積分器、量化器以及D/A反饋組成,其中fs表示采樣時(shí)鐘頻率,K1,K2分別表示輸入信號(hào)和反饋信號(hào)的增益系數(shù)。
圖1 Σ-Δ調(diào)制器基本結(jié)構(gòu)
習(xí)慣上,定義調(diào)制器中含有的積分器個(gè)數(shù)為調(diào)制器的階數(shù)L,量化器的個(gè)數(shù)為級(jí)數(shù)。對(duì)調(diào)制器的線性模型做離散域的z變換分析,并將量化誤差模型化為噪聲信號(hào),可以推導(dǎo)出輸出信號(hào)Y對(duì)輸入信號(hào)X與量化誤差E的傳遞函數(shù),在有效信號(hào)頻率內(nèi),輸入信號(hào)保持不變而噪聲信號(hào)被差分衰減,即
Y(z)=z-LX(z)+(1-z-1)LE(z) (1)
通常,對(duì)調(diào)制器性能評(píng)測(cè)的重要參數(shù)之一是信噪比SNR,即信號(hào)功率與噪聲功率之比
(2)
這里ps為有效信號(hào)的功率,對(duì)正弦信號(hào)來說,ps=,A為幅度;pq是信號(hào)頻帶內(nèi)總的量化噪聲功率,由E(z)的傳遞函數(shù)在有效信號(hào)頻帶內(nèi)積分得到
(3)
從上式可以看出,分別提高M(jìn)或L都能帶來SNR的提高。但當(dāng)信號(hào)頻率達(dá)到幾十MHz以上的高頻范圍后,M的提高勢(shì)必會(huì)受到現(xiàn)有工藝,以及功耗等制約。目前,更多的研究改善SNR的方法是針對(duì)L的提高。
從調(diào)制器內(nèi)在穩(wěn)定性考慮,針對(duì)高階調(diào)制器(L≥3),又有兩種結(jié)構(gòu)上的取向,即單級(jí)single-loop結(jié)構(gòu)和多級(jí)級(jí)聯(lián)的MASH結(jié)構(gòu)。
2.2 過采樣及MASH(多級(jí)噪聲成形)技術(shù)
本文中使用記號(hào)fN來表示Nyquist調(diào)制器工作時(shí)的采樣率,而它與基帶信號(hào)最高頻率fB的關(guān)系工程上一般為fN≈2.2fB~2.5fB。所謂過采樣,就是指采樣速度fs遠(yuǎn)大于fN。這里稱M=fs/fN為“過采樣比”。在Σ-ΔADC的設(shè)計(jì)中,M遠(yuǎn)大于1,且取為2的整數(shù)次冪(如32、64等)。過采樣帶來的好處為壓縮基帶內(nèi)量化噪聲,降低對(duì)輸入端模擬濾波器的要求等。
但是,光憑過采樣來壓縮基帶內(nèi)噪聲是低效率的,提高4倍采樣率才相當(dāng)于提高1bit分辨率。為了更有效地衰減基帶內(nèi)量化噪聲,應(yīng)在過采樣條件下進(jìn)一步加入噪聲成形(noise shaping)技術(shù)。最基本的一階噪聲成形器即所謂的一階Σ-Δ調(diào)制器,其原理此處不再討論。這里只指出,它可被轉(zhuǎn)化為如圖2所示的離散時(shí)間等效模型。
圖2 一階Σ-Δ調(diào)制器離散時(shí)間等效模型
圖2中的積分器用I(z)=(1-z-1)-1等效描述,而1bit ADC被加性噪聲源q(n)替代。嵌在反饋環(huán)路中的1bit DAC被一個(gè)單位時(shí)延z-1取代,以避免在離散時(shí)間模型中出現(xiàn)無時(shí)延反饋環(huán)。q(n)是與輸入信號(hào)無關(guān)的白噪聲,用它能夠方便地描述Σ-Δ調(diào)制器在大量信號(hào)作用下的平均行為,分析可得其輸入、輸出關(guān)系式為
Y(z)=X(z)+(1-z-1)Q(z) (4)
由上式可知,在信號(hào)頻譜X(z)未變的同時(shí),白噪聲Q(z)被(1-z-1)加權(quán)而成為“高通”形狀。此現(xiàn)象正是所謂“噪聲成形”。加權(quán)函數(shù)(1-e-j2πfT)的零點(diǎn)f=0使得基帶內(nèi)噪聲被大大壓縮;而在帶外的高頻端,噪聲卻略有上升。
在實(shí)際應(yīng)用中,為更有效地壓低量化噪聲達(dá)到分辨率要求,還得考慮高階噪聲成形。一般地,將L個(gè)一階Σ-Δ調(diào)制器組合起來,可以實(shí)現(xiàn)(1-z-1)L(L階噪聲成形)。
標(biāo)準(zhǔn)的MASH(Multistage Noise Shaping,多級(jí)噪聲成形)結(jié)構(gòu)如圖3。它實(shí)際上是L個(gè)一階Σ-Δ調(diào)制器的串聯(lián),其中前一級(jí)調(diào)制器內(nèi)的1bit ADC的量化誤差被送入下一級(jí)進(jìn)行再量化,然后將各級(jí)的輸出碼流送入運(yùn)算節(jié)點(diǎn)進(jìn)行處理。最后輸出了經(jīng)(1-z-1)L成形處理后的低分辨率碼流。顯然,這樣的前饋結(jié)構(gòu)不會(huì)存在任何穩(wěn)定方面的問題。
圖3 MASH結(jié)構(gòu)框圖
MASH中的數(shù)字處理節(jié)點(diǎn)所做的工作是抵消各級(jí)的量化誤差:
第一級(jí):Y1(z)=X(z)+(1-z-1)Q1(z),將-Q1(z)送入第2級(jí),有Y2(z)=-Q1(z)+(1-z-1)Q2(z),再將-Q2(z)送入第3級(jí),有Y3(z)=-Q2(z)+(1-z-1)Q3(z),..直至YL(z)=-QL-1(z)+(1-z-1)QL(z),而運(yùn)算節(jié)點(diǎn)使得
Y(z)=Y1(z)+(1-z-1)Y2(z)+...+(1-z-1)L-1YL(z)=X(z)+(1-z-1)LQL(z) (5)
這樣,就等效實(shí)現(xiàn)了(1-z-1)L噪聲成形。除MASH外,還有許多新穎的采用計(jì)算機(jī)輔助設(shè)計(jì)的Σ-Δ噪聲成形方案,用其可實(shí)現(xiàn)更高效的噪聲成形。
3 一種DAC非線性誤差校正方法
在MASHΣ-ΔADC中,與一位(1bit)量化相比,采用多位量化器具有增大信噪比(SNR),增加穩(wěn)定性以及降低運(yùn)算放大器規(guī)格等優(yōu)點(diǎn)。然而,內(nèi)部DAC的非線性導(dǎo)致性能瓶頸,通常要求其最少具有與整個(gè)ADC同樣好的線性?,F(xiàn)在,對(duì)于較大過采樣比(OSR>32),采用即時(shí)數(shù)字校準(zhǔn)、失配整形可解決此問題。但在寬帶ADC中,OSR較小(通常≤4),失配整形法就變得無效。本文描述了一種數(shù)字即時(shí)校準(zhǔn)方法。不同于較早的技術(shù),其對(duì)低過采樣比狀態(tài)有效。并且,此方法可以跟隨漂移。
3.1 校正系統(tǒng)
以二階Σ-Δ調(diào)制器(DS1)為例來說明給出的校正技術(shù)。如圖4所示,內(nèi)部DAC有兩個(gè)輸出:v1和vT,分別輸入到循環(huán)濾波和校準(zhǔn)ADC(DS2)。由校準(zhǔn)ADC得到^eD,即所有輸出電平的DAC誤差eD的數(shù)字估計(jì),并且其被存儲(chǔ)在RAM中。在轉(zhuǎn)換時(shí),通過FIR濾波器NLF(z)過濾RAM的輸出,從而校正內(nèi)部DAC誤差,并從DS1的數(shù)字輸出d1中減去過濾輸出結(jié)果。獲得^eD的過程和系統(tǒng)的詳細(xì)分析在以下內(nèi)容中給出。
圖4 帶有誤差校正的Σ-Δ調(diào)制器
在圖4所示系統(tǒng)中,假設(shè)單獨(dú)DAC輸出為兩個(gè)積分器提供反饋信號(hào)。系數(shù)b1、b2的不匹配對(duì)系統(tǒng)線性沒有影響。值得注意的是,系統(tǒng)沒有對(duì)內(nèi)部ADC的非線性誤差進(jìn)行校正。這些誤差被與量化噪聲同樣的噪聲傳輸函數(shù)所抑制,其很少作為問題提出。當(dāng)使用很低的OSR時(shí),這樣是不夠的,就高線性而言,需要增加階數(shù)或使用ADC元件失配整形。
3.2 校正方法
實(shí)際DAC輸出電平誤差的即時(shí)獲得適應(yīng)于DAC的結(jié)構(gòu)。如果DAC可提供多重輸入和輸出,那么離線校準(zhǔn)能夠被傳輸?shù)胶笈_(tái)進(jìn)程。如果那樣,對(duì)于DAC的每個(gè)可能的輸入,數(shù)字校準(zhǔn)信號(hào)dT將提供階梯波形。通過校準(zhǔn)Σ-Δ轉(zhuǎn)換器DS2,每個(gè)DAC輸出電平vT被轉(zhuǎn)換成數(shù)字形式d2,然后通過LPF低通濾波而消除DS2的量化誤差。然后,減去dT從而補(bǔ)償電平誤差eD,這樣,得到誤差估計(jì)^eD并將其存儲(chǔ)在RAM中,并且對(duì)每一輸出d1將再次調(diào)用^eD并校正。在運(yùn)行過程中,周期性地重復(fù)校準(zhǔn),以追蹤DAC輸出電平中產(chǎn)生的漂移。
在低過采樣率(OSR)和低階循環(huán)濾波器情況下,從DAC的輸出v1到DS1的輸出d1的傳輸函數(shù)不能由NLF(z)=-1正確地近似。為了得到精確的誤差校準(zhǔn),如圖4所示,RAM的輸出需要被實(shí)際的NLF(z)(此處為-2z-1+z-2)過濾。
在一些DAC的實(shí)現(xiàn)中,使用了N個(gè)等價(jià)單位元件(電流源、電容、電阻等)。如果在DAC中執(zhí)行N+1個(gè)元件,可使用上述算法,利用DS2逐個(gè)順序地測(cè)量它們的誤差。換句話說,輸出信號(hào)d1與校準(zhǔn)信號(hào)dT一樣可被使用。利用n個(gè)單位元件通過調(diào)用d1值從而產(chǎn)生v1,剩余的N-n個(gè)單位元件被用來產(chǎn)生vT。如果DAC增益和偏移誤差是可以被接受的,為了使所有單位元件誤差總和可取零,那么vT中的誤差是v1中誤差的負(fù)數(shù)。因此,通過將vT中的模擬采樣分類進(jìn)入通道,使用其中一個(gè)通道專用于每個(gè)可能輸入(d1)碼和其補(bǔ)碼,DS2可用來以數(shù)字形式產(chǎn)生單獨(dú)DAC電平。由于為每一DAC電平復(fù)制存儲(chǔ)元件(反饋電容),DS2的運(yùn)算可容易地在通道中多重復(fù)用。
由于線性運(yùn)算,校準(zhǔn)ADC(DS2)自身必須要有高的線性。這需要在DS2中使用1位內(nèi)部量化器。但是,由于DAC非線性信息保持,線性影響(增益和偏移誤差)在DS2中是可以接受的。同樣,實(shí)際DAC誤差傳輸函數(shù)(從v1至d1)和其數(shù)字復(fù)制部分NLF(z)之間的匹配誤差對(duì)整個(gè)轉(zhuǎn)換器的線性僅有較小的影響。
3.3 仿真結(jié)果
數(shù)字校正ADC(如圖4的DS2)的運(yùn)行仿真條件如下述。假設(shè)5bit(322電平)內(nèi)部ADC和DAC,在DAC中有0.1%線性梯度誤差。這符合中等誤差0.4%的要求。在所有電路中,所有運(yùn)放和任意失配電容(有0.1%標(biāo)準(zhǔn)偏差)的有限直流增益設(shè)定為54dB。使用OSR=4。在DS1中加入峰值為0.45V的中頻雙音調(diào)輸入信號(hào)u1,采用二階單位Σ-ΔADC實(shí)現(xiàn)DS2。為了論證利用校準(zhǔn)可得到的高線性,DS1被接入在220MASH(包含10bitADC作為其第二級(jí))中。這里不考慮在MASH(多級(jí)噪聲整形)各級(jí)中的失配,它同樣可由數(shù)字方法校正。
采用理想DAC、非理想運(yùn)放和電容,系統(tǒng)運(yùn)行計(jì)算出的頻譜如圖5(a)所示。圖5(b)給出了使用誤差校準(zhǔn)的非線性DAC得到的頻譜??梢钥闯?產(chǎn)生了大的諧波,SFDR僅為52dB。當(dāng)使用了本文提出的數(shù)字校正技術(shù)后,頻譜結(jié)果如圖5(c)所示,得到SFDR>100dB。為了得到這樣高的SFDR所需要的充分精確的eD估計(jì),DS2對(duì)DAC的每一電平進(jìn)行了218采樣(如果DS2時(shí)鐘控制在fs=5MHz,那么后臺(tái)校準(zhǔn)完整循環(huán)需要約4秒)。最后,圖5(d)說明了使用NLF(z)=-1后的有害影響,即SFDR由101dB降至60dB。
圖5 MASH的輸出頻譜(215采樣,64倍FFT,fB=fs/8,OSR=4)
5 結(jié)論
本文介紹了Σ-Δ調(diào)制器的基本原理和技術(shù),并針對(duì)采用多位內(nèi)部量化器的MASH Σ-ΔADC提出了一種即時(shí)數(shù)字校正方法。對(duì)于低過采樣比的模數(shù)轉(zhuǎn)換器,采用通常的失配整形技術(shù)效果不佳,但本方法可有效應(yīng)用于此。通過仿真證明,使用本文提出的即時(shí)數(shù)字校正法可得到極好的線性。