當(dāng)前位置:首頁(yè) > 汽車電子 > 汽車電子
[導(dǎo)讀]WSN(Wireless Sensors Network)是集傳感器技術(shù)、MEMS技術(shù)和網(wǎng)絡(luò)技術(shù)于一體的一種信息獲取和信息處理技術(shù)[1],它具有自組織、自適應(yīng)能力,在智能交通方面具有獨(dú)特的優(yōu)點(diǎn)和廣闊的應(yīng)用前景[2]。在智能公交系統(tǒng)中,車輛位

WSN(Wireless Sensors Network)是集傳感器技術(shù)、MEMS技術(shù)和網(wǎng)絡(luò)技術(shù)于一體的一種信息獲取和信息處理技術(shù)[1],它具有自組織、自適應(yīng)能力,在智能交通方面具有獨(dú)特的優(yōu)點(diǎn)和廣闊的應(yīng)用前景[2]。

在智能公交系統(tǒng)中,車輛位置的準(zhǔn)確求取和傳遞是其他系統(tǒng)功能實(shí)現(xiàn)的先決條件。當(dāng)前已經(jīng)有了一些利用無(wú)線傳感器搭建智能公交系統(tǒng)的通信網(wǎng)絡(luò)的方案[4-6],但這些方案均利用其他手段實(shí)現(xiàn)車輛的定位,鮮有利用無(wú)線傳感器自身的TOF測(cè)距功能實(shí)現(xiàn)車輛定位功能。而利用基于TOF的無(wú)線傳感器實(shí)現(xiàn)公交車載節(jié)點(diǎn)的定位可以降低系統(tǒng)建設(shè)和實(shí)用成本,對(duì)公交系統(tǒng)智能化改造具有參考意義。

在無(wú)線傳感器定位算法中,由于Range-free定位算法要求大密度的參考節(jié)點(diǎn),所以不適合智能公交系統(tǒng)車輛定位。而通?;赥OA、TDOA以及AOA的定位技術(shù)需要添加額外的硬件,導(dǎo)致系統(tǒng)的定位成本增加?;赗SSI測(cè)距的方法雖然易于實(shí)現(xiàn),但由于其有效定位距離近,遠(yuǎn)距離情況下定位精度較低,因此很難單獨(dú)應(yīng)用。近年來(lái),英國(guó)Jennic公司最新推出了采用TOF(Time Of Flight)測(cè)距技術(shù)的ZigBee芯片JN5148,能夠有效地提高無(wú)線傳感器測(cè)距精度。本文即以此為背景對(duì)公交車載節(jié)點(diǎn)的定位算法和策略進(jìn)行了深入研究。

1 基于TOF/RSSI定位算法分析研究

為了充分發(fā)揮JN5148的測(cè)距能力,本文對(duì)其進(jìn)行了測(cè)距實(shí)驗(yàn),并對(duì)其在車載節(jié)點(diǎn)定位上的應(yīng)用方法進(jìn)行了研究和討論。

1.1 TOF測(cè)距效果實(shí)驗(yàn)分析

JN5148通過(guò)測(cè)定無(wú)線信號(hào)在兩節(jié)點(diǎn)間雙向傳遞時(shí)間計(jì)算節(jié)點(diǎn)間距離[5-6],同時(shí)其數(shù)據(jù)幀中包含RSSI參數(shù)。JN5148芯片在戶外的測(cè)距實(shí)驗(yàn)曲線如圖1所示,圖1(a)是在300 m范圍內(nèi)每10 m進(jìn)行一次測(cè)量的測(cè)距誤差圖;圖1(b)是10 m范圍內(nèi)每0.2 m進(jìn)行一次測(cè)量的測(cè)距誤差圖。

 

 

1.3 車載節(jié)點(diǎn)定位方案分析

為了提高車載節(jié)點(diǎn)定位精度,考慮了以下幾種改進(jìn)方案:

(1)縮短固定參考節(jié)點(diǎn)間距離

通過(guò)增加固定節(jié)點(diǎn)的數(shù)量,以縮短相鄰固定節(jié)點(diǎn)間的平均距離、優(yōu)化幾何構(gòu)型。如可將圖2(a)中固定節(jié)點(diǎn)A、B間距離縮短到100 m。

(2)引入高度因素構(gòu)建三維定位

通過(guò)調(diào)整固定參考節(jié)點(diǎn)高度(如:將固定節(jié)點(diǎn)C安裝在附近高樓上),構(gòu)建立體三維定位,以改善固定參考節(jié)點(diǎn)與待測(cè)節(jié)點(diǎn)的幾何構(gòu)型。

(3)采用線性定位思路

根據(jù)實(shí)際道路特點(diǎn),忽略道路寬度,采用線性定位法,僅考慮車載節(jié)點(diǎn)在道路上的一維位置。

綜合考慮以上三種改進(jìn)方法,第一種方案的系統(tǒng)造價(jià)高,構(gòu)建的網(wǎng)絡(luò)復(fù)雜;第二種方案受道路環(huán)境影響較大,操作困難:第三種方案可將無(wú)線傳感器固定在路中間(如信號(hào)燈上、道路指引牌上等),通過(guò)無(wú)線傳感器測(cè)距,直接估算車輛的位置,對(duì)WSN節(jié)點(diǎn)的要求低,較為可行。

2 車載節(jié)點(diǎn)組合定位思路研究

在公交車線性定位過(guò)程中,可利用里程儀信息,里程儀的測(cè)距誤差一般在1%左右[8]。若公交車受復(fù)雜路況等因素影響,僅用里程儀定位將產(chǎn)生較大誤差。如圖3所示的城市道路示意圖中,僅由道路轉(zhuǎn)盤(綠島)產(chǎn)生的差異就會(huì)使公交車往返路程差超過(guò)30 m。為了提高車輛定位的魯棒性和精度,本文提出了使用里程儀與無(wú)線傳感器的TOF/RSSI測(cè)距相結(jié)合進(jìn)行車載節(jié)點(diǎn)組合定位的方法。

 

 

根據(jù)無(wú)線傳感器的TOF/RSSI以及車輛里程儀的測(cè)距特點(diǎn),定位算法的主要思想如下:車載節(jié)點(diǎn)在離固定節(jié)點(diǎn)較近時(shí)采用RSSI測(cè)距定位,同時(shí)計(jì)算里程儀誤差修正參數(shù);車輛節(jié)點(diǎn)距離固定節(jié)點(diǎn)較遠(yuǎn)時(shí),采用由TOF測(cè)距定位修正的里程儀進(jìn)行定位的組合定位思路。詳細(xì)的定位算法流程如圖4所示。

 

 

車載節(jié)點(diǎn)將RSSI值與設(shè)定閾值比較,當(dāng)RSSI值大于閾值時(shí),說(shuō)明節(jié)點(diǎn)即將到達(dá)或剛開始遠(yuǎn)離某固定節(jié)點(diǎn);然后判斷RSSI值的變化趨勢(shì),RSSI值減小則說(shuō)明節(jié)點(diǎn)在前一個(gè)數(shù)據(jù)采集時(shí)刻車輛與固定節(jié)點(diǎn)位置最近,此時(shí)利用RSSI值進(jìn)行測(cè)距定位,并使用RSSI測(cè)距值和里程儀測(cè)距值估計(jì)里程儀偏差值。利用無(wú)線傳感器RSSI估計(jì)里程儀的偏差值算法流程如圖5(a)所示。

 

 

當(dāng)公交車輛繼續(xù)遠(yuǎn)離固定節(jié)點(diǎn)時(shí),所采集的RSSI值小于閾值,開始進(jìn)入基于里程儀和TOF組合定位模式。利用TOF修正里程儀偏差的算法如圖5(b)所示,其中,dODM為里程儀測(cè)距值,dTOF為TOF測(cè)距值,?啄TOF為TOF測(cè)距誤差。利用車載節(jié)點(diǎn)存儲(chǔ)多個(gè)TOF測(cè)距值,與相應(yīng)里程儀測(cè)距值相減,可得到一組差值序列。該歷史差值序列可以用于求解里程儀偏差和刻度系數(shù)誤差,對(duì)里程儀誤差進(jìn)行實(shí)時(shí)補(bǔ)償。

一般來(lái)說(shuō),當(dāng)里程儀測(cè)距值與TOF測(cè)距值的差值大于兩倍的TOF測(cè)距誤差時(shí),說(shuō)明里程儀定位誤差較大,需要進(jìn)行修正。通過(guò)差值序列獲取方式的不同,還可以將該補(bǔ)償算法分為靜態(tài)TOF校正法(利用某固定時(shí)段的差值序列)和動(dòng)態(tài)TOF校正法(利用實(shí)時(shí)更新的差值序列)。

3 組合定位算法的驗(yàn)證

為了驗(yàn)證上述組合算法的有效性,利用MATLAB對(duì)上述算法進(jìn)行了仿真。TOF及RSSI的測(cè)距誤差按式(1)、式(2)的誤差模型進(jìn)行設(shè)置;里程儀的刻度系數(shù)誤差設(shè)為1%,里程儀的初始偏差設(shè)為16 m。

圖6(a)為模擬車載節(jié)點(diǎn)離開固定節(jié)點(diǎn)時(shí)利用RSSI修正里程儀誤差結(jié)果。從圖中可以看出,利用RSSI估計(jì)并修正里程儀測(cè)距誤差的效果十分明顯。

將TOF測(cè)距值與對(duì)應(yīng)里程儀測(cè)距值的差值序列進(jìn)行一階線性擬合,可求解刻度系數(shù)誤差和里程儀偏差,并對(duì)里程儀數(shù)據(jù)進(jìn)行修正。仿真中靜態(tài)校正法采用0 m~200 m的差值序列進(jìn)行里程儀誤差的補(bǔ)償,結(jié)果如圖6(b)所示。動(dòng)態(tài)校正法實(shí)時(shí)使用修正點(diǎn)前,200 m的差值序列進(jìn)行里程儀誤差的補(bǔ)償,結(jié)果如圖6(c)所示。兩種算法結(jié)果都表明:TOF校正后的里程儀測(cè)距精度遠(yuǎn)高于TOF和里程儀自身的測(cè)距精度。

表1中匯集了其中5次的仿真結(jié)果。其中,組合算法1包含了RSSI校正和靜態(tài)TOF校正,組合算法2包含了RSSI校正和動(dòng)態(tài)TOF校正。

 

 

由表1可知,基于TOF/RSSI的公交車載節(jié)點(diǎn)組合定位算法定位效果優(yōu)于三種獨(dú)立的測(cè)距定位方法,定位標(biāo)準(zhǔn)差小于5 m(與GPS定位精度相當(dāng))。組合算法1定位標(biāo)準(zhǔn)差優(yōu)于組合算法2;組合算法2的魯棒性要強(qiáng)于組合算法1,但其計(jì)算量較大。兩種組合算法均在一定程度上改善了TOF測(cè)距誤差波動(dòng)大、RSSI遠(yuǎn)程測(cè)距誤差大、里程儀測(cè)距在車輛非直線行駛時(shí)定位誤差大的缺點(diǎn)。

本文對(duì)基于無(wú)線傳感器網(wǎng)絡(luò)的車載節(jié)點(diǎn)定位方法進(jìn)行了研究,測(cè)試分析了新型的TOF無(wú)線傳感器芯片JN5148的測(cè)距效果,研究了固定節(jié)點(diǎn)分布對(duì)車輛定位的影響,提出了基于TOF/RSSI及車輛里程儀的組合車輛定位算法,并討論了靜態(tài)和動(dòng)態(tài)兩種TOF誤差修正模式。仿真結(jié)果表明,組合定位算法精度能夠滿足實(shí)際應(yīng)用要求,結(jié)合無(wú)線傳感器網(wǎng)絡(luò)本身的良好通信能力,有助于經(jīng)濟(jì)地實(shí)現(xiàn)公交系統(tǒng)智能化改造,具有較好的應(yīng)用參考價(jià)值。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉