當前位置:首頁 > 通信技術(shù) > 通信技術(shù)
[導(dǎo)讀]本文研究了電場積分方程(EFIE)中被積函數(shù)奇異性的處理方法,特別是三維矢量散射分析中出現(xiàn)的高階奇異性,給出了兩種解決積分方程奇異性的數(shù)值方法.一種方法是計算O(1/R)階奇異積分的奇異轉(zhuǎn)移法[1].另一種方法是為解

本文研究了電場積分方程(EFIE)中被積函數(shù)奇異性的處理方法,特別是三維矢量散射分析中出現(xiàn)的高階奇異性,給出了兩種解決積分方程奇異性的數(shù)值方法.一種方法是計算O(1/R)階奇異積分的奇異轉(zhuǎn)移法[1].另一種方法是為解決O(1/R2)高階奇異積分的數(shù)值計算問題的,它是通過排除一包含奇點的有限小塊,而這一小塊區(qū)域?qū)Ψe分的貢獻為零,從而使積分方程在整個積分域變得數(shù)值可積.
  關(guān)鍵詞:三維矢量散射;電場積分方程;自阻抗;主值積分

Singularity Analysis of the Integral Equation for Three Dimension Vector Fields Scattering

WANG Hao-gang,NIE Zai-ping
(Dept.of Microwave Eng.,UEST of China,Chengdu 610054,China)

  Abstract:In this paper,the singularity in the integrand of electrical field integral equation (EFIE) for 3-dimensional vector fields scattering is first analyzed.Two numerical methods for solving the singularity integral equation are developed.One method is the singularity transferring method for calculating integral value containing O(1/R) singularity in its integrand[1].The other singularity is removed first and the integral contribution of this small area is proved to be zero.Thus,the integral on the whole integral area can be calculated properly by using numberical method.
  Key words:3 dimension vector fields scattering;electrical field integral equation;self-impedance;principal integral

一、引  言
  隨著計算技術(shù)的發(fā)展,數(shù)值方法在求解三維矢量散射問題中的應(yīng)用越來越廣泛.用矩量法求解三維矢量散射問題的關(guān)鍵是精確求解阻抗矩陣的元素,特別是自阻抗元素.求解這些矩陣元素需要對場點和源點的面積分.在自阻抗元素的求解中,將遇到場點與源點重合時產(chǎn)生奇異積分核的問題.目前,國內(nèi)外學者對此類奇異積分的處理,盡管有一些研究,但不盡如人意.有的對其作近似處理[3],降低了阻抗矩陣對角線元素的數(shù)值精確性,從而直接影響到電磁散射數(shù)值解的精度.對電場積分方程(EFIE)中被積函數(shù)奇異性(自阻抗元素的積分表示式中含有奇異性的來源)的分析可采用主值積分法,得到的電場積分方程是去除奇點的主值積分.由于在奇點附近,被積函數(shù)變化非常劇烈,所以不能對該主值積分使用一般的數(shù)值求積方法.但由于在主值積分中積分域不含奇點,被積函數(shù)是解析的,故可方便地對其進行數(shù)值分析.本文結(jié)合參數(shù)幾何知識導(dǎo)出了對主值積分形式的電場積分方程進行數(shù)值求積的兩種方法.其一是在奇異轉(zhuǎn)移方法[1]基礎(chǔ)上對電場積分方程中O(1/R)階奇異積分項進行數(shù)值求積的具體方案.其二是對O(1/R2)高階奇異積分項的處理,這種方法是去除奇點附近被積函數(shù)變化劇烈的一有限小塊區(qū)域,然后證明了在這一小塊區(qū)域內(nèi)的積分為零,從而使積分變得數(shù)值可積,較圓滿地解決了電場積分方程數(shù)值求解問題.運用本文方法對導(dǎo)體球及兩端開口薄壁圓柱和正方形平板的RCS進行了數(shù)值計算,獲得了滿意的結(jié)果.

二、積分的奇異性及三維EFIE的主值積分
  三維導(dǎo)體矢量散射的電場積分方程(EFIE)可表示為:

 (1)

選擇適當?shù)木钟螂娏骰瘮?shù){jp(r′)}來表示金屬散射體表面電流J(r′),得:

 (2)

再選擇適當?shù)臋?quán)函數(shù){tq(r)},從而把式(1)離散成矩陣方程:

 (3)

  其中,Fq為激勵項,ap為響應(yīng)項,Aqp則為阻抗元素項.在參數(shù)空間中,阻抗元素的積分表達式為:

 (4)

式中,sq和sp分別表示對場點和對源點的積分域;u1和u2與u′1和u′2分別為參數(shù)空是中場點和源點的坐標;r/ui和r′/ui(i=1,2)為實空間中物體表面上的r和r′點的切向矢量;g=det(gij),(i,j=1,2),gij=r/ui.r/uj,(i,j=1,2)為曲面s的第一類基本量[4].
  參數(shù)空間中,基函數(shù)選擇屋頂函數(shù)(rooftop functions):

 (5)
 (6)

式(5)、(6)中i=1時,j=2;i=2時,j=1,而且

 (7)

 (8)

  當sself=sq∩sp≠φ時,Aqp被稱作自阻抗元素,此時場點積分域與源點積分域部分或完全重合.當r′→r時,R→0,從式(4)可以看出,被積函數(shù)發(fā)散.在經(jīng)典函數(shù)論中,該積分無意義.這對數(shù)值求解帶來巨大的困難.
  然而,在實際上電流產(chǎn)生的場總是有限和唯一的.對此,采用奇異積分的主值積分法[5]分析電場積分方程.式(1)可寫成:

 (9)

式中,電場積分方程被分為兩項.第一項為不含場點(奇點)的主值積分.第二項為含場點的分離面積元積分.由于主值積分不含有奇點,故可用通常的數(shù)值方法計算.下面討論第二項對整個積分方程的貢獻.可以證明[6]不論Δs形狀如何,當Δs→0時,Δs自身散射場Esself與場點處總場E(r)有以下關(guān)系:

 (10)

  由于在理想導(dǎo)體表面上電場與表面垂直,所以式(9)第二項為零,即:

 (11)
上式就是電場積分方程的主值積分.不難看出式(1)和(11)的區(qū)別僅為:主值積分的積分域不含有奇點,因此可用經(jīng)典函數(shù)論的方法分析其積分值收斂趨勢.于是,阻抗元素計算式(4)可改寫為:

其中r∈sq,Δsself∈{Δs},∑Δs=sq,Δsselfsself=sq∩sp,Δsself→0 (12)
由式(12)可知,在關(guān)于場點和源點的面積分中,被積函數(shù)包含了兩項:

 (13)
 (14)

阻抗矩陣計算式(4)和(12)可分別簡寫為:

 (15)

 (16)

其中r∈sq,Δsself∈{Δs},∑Δs=sq,Δsselfsself=sq∩sp,Δsslef→0.
  式(15),(16)都能用來求解矩陣自阻抗元素.但式(16)對源點使用主值積分,便于數(shù)值分析.兩式中,I1=I′1,I2=I′2.為方便計,選擇其中的I1和I′2.

三、奇異項轉(zhuǎn)移方法
  在式(13)中,僅包含弱奇異性的Abel積分核[7].一般來講,對于這類積分,數(shù)值計算時只要分格越細(不取奇點),所得的數(shù)值結(jié)果就越精確.但計算量增加.若取較少的節(jié)點,則由于被積函數(shù)在奇點附近變化劇烈,導(dǎo)致誤差增大.所以必須尋找一種在數(shù)值計算上實際可行的方案.處理這類奇異積分的方法之一是奇異轉(zhuǎn)移法[1].本文將這種方法進行了推廣,以便解決式(13)那樣的奇異問題.經(jīng)過簡單的數(shù)學處理,得:

 (17)

在上式中,第一項被積函數(shù)在積分域是連續(xù)有限的,因此數(shù)值可積.在第二項積分中,因子f1(r,r)只與場點有關(guān),故可提到積分號外,因此簡化了奇異項以便于使用積分的解析解:

式中R0=
 (19)

四、挖除有限小塊法
  下面討論I′2的數(shù)值積分.積分項I′2不包含奇點,其被積函數(shù)F2(r,r′)在積分域上是解析的.但在奇點r附近,由于F2(r,r′)隨r′的變化非常劇烈,用一般的數(shù)值求積是很困難的.
  用一有限小曲面塊ΔS包圍奇點(ΔSsp),并設(shè)F2(r,r′)的陡變部分在ΔS中.取Δs0=ΔS-Δsself.在實際空間中,Δs0對應(yīng)于一很小的曲面塊,即Δs0<<1.而在參數(shù)空間中,Δs0則為一很小的矩形塊,其長為Δu1,寬為Δu2,如圖1.這時I′2變?yōu)椋?/span>

 (20)

式中第一項不含陡變部分,所以可用一般的數(shù)值求積方法計算.第二項不含奇點,可以得到解析結(jié)果.

 

圖1 挖除有很小塊Δs0.(a)參數(shù)空間對應(yīng)的矩形有限小塊,矩形中點為奇異點(u1,u2);(b)實空間對應(yīng)的有限小塊Δs0;(c)參數(shù)空間中,奇異點(u1,u2)平移到原點0后,矩形有限小塊的極坐標圖

  由式(14)可知,由于含有隨源空間r′變化的幾何因子和jp(r′)含有的因子1/相互抵消,簡化了求積運算.于是,式(14)簡化為:

 (21)

  在上式中,A(r)為不隨源點變化的因子,而且

 (22)
 (23)

  當Δs0<<1,有R0≈R.
  由圖1可知,在參數(shù)空間中,Δs0的中點恰好位于奇點上,故I22中對源點的積分域關(guān)于奇點對稱,這將為求積帶來方便.若作一平移,使坐標原點與奇點重合(如圖1所示),不難證明I22值為零.
  因

 (24)

其中, (25)
從而有:SSG(R0)=SSG(R0(ρ,θ))=SSG(R0(ρ,θ+π)) (26)
及 (27)
于是I22則可寫為:

 (28)

把式(26),(27)代入式(28),化簡后得I22=0.于是式(20)變成:I′2=I21+0=I21.從上述分析可知,分離的小塊域?qū)Ψe分無貢獻.所以,在實際計算中,可以方便地使用數(shù)值求積方法計算I′2,并令場點等于源點時的積分為零.


五、數(shù)值結(jié)果
  為了驗證以上奇異積分處理方法的正確性,下面給出三個數(shù)值實例.
  例一為某一半徑的電尺寸為ka=0.5的金屬導(dǎo)體球受到來自于負z向的平面波照射,如圖2所示.圖3為該例E面和H面的雙站RCS.圖4則為文[2]相應(yīng)的結(jié)果.顯然,兩者具有很好的一致性.

 

 

圖2 -ka=0.5的金屬導(dǎo)體球和一兩端開口無限薄金導(dǎo)體圓柱分別受到來自于負z向的平面波照射

               

圖3 導(dǎo)體球的E面和H面的雙站RCS

圖4 文[2]相應(yīng)導(dǎo)體球的數(shù)值結(jié)果

  例二則為一兩端開口的無限薄金屬導(dǎo)體圓柱受到來自于負z向(圓柱軸向)的平面波的照射,如圖2所示.圖5、圖7分別為其E面和H面雙站RCS曲線,圓柱半徑的電尺寸為ka=1,圓柱長度的電尺寸kl=λ.與文[2]的數(shù)據(jù)(圖6,圖8)比較,十分一致.

圖5 兩端開口薄壁圓柱的E面雙站RCS

圖6 文獻[2]相應(yīng)的E面雙站RCS

圖7 兩端開口薄壁圓柱的H面雙站RCS

圖8 文獻[2]相應(yīng)的H面雙站RCS

  例三是一邊長為5λ的正方形導(dǎo)電平板(如圖10)在仰角平面φ=60°上散射場的極化和極化方向雙站RCS計算.其中入射場為極化,入射方向則為(θi,φi)=(45°,0°).
  圖9是本文方法的計算結(jié)果,圖10是文[3]相應(yīng)結(jié)果.

圖9 邊長為5λ的正方形平板的雙站RCS

圖10 文獻[3]平板雙站RCS的相應(yīng)結(jié)果

六、結(jié)  論
  本文首先分析了電場積分方程(EFIE)中積分的奇異性,并提出了對奇異積分進行數(shù)值求解的兩種方法:Aqp的第一項含O(1/R)階奇異性,采用了奇異轉(zhuǎn)移的方法,并對其進行實用化推廣,得到式(20).式(20)中被轉(zhuǎn)移項由于在奇點是連續(xù)有限的,可用數(shù)值方法求積,奇異項則可沿用式(19)的解析結(jié)果.當處理Aqp的第二項(含O(1/R2)階奇異性)時,采用挖除有限小塊的方法,并證明I22=0.為使I22=0,基函數(shù)選擇了帶因子1/的屋頂函數(shù),奇點選在有限小塊的中心位置(參數(shù)空間),有限小塊Δs0的尺寸則需能在一定精度條件下滿足R0≈R.三個數(shù)值實例表明,應(yīng)用本文的這兩種方法可精確地求解三維矢量電磁散射問題中的奇異積分.

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉