當(dāng)前位置:首頁 > 測試測量 > 測試測量
[導(dǎo)讀] 廠商推出了具有出色的靜態(tài)和動態(tài)特性的高性能模數(shù)轉(zhuǎn)換器(ADC)。你或許會問,“他們是如何測量這些性能的,采用什么設(shè)備?”。下面的討論將聚焦于有關(guān)ADC兩個重要的精度參數(shù)的測量技術(shù):積分非

廠商推出了具有出色的靜態(tài)和動態(tài)特性的高性能模數(shù)轉(zhuǎn)換器(ADC)。你或許會問,“他們是如何測量這些性能的,采用什么設(shè)備?”。下面的討論將聚焦于有關(guān)ADC兩個重要的精度參數(shù)的測量技術(shù):積分非線性(INL)和微分非線性(DNL)。

  盡管INL和DNL對于應(yīng)用在通信和高速數(shù)據(jù)采集系統(tǒng)的高性能數(shù)據(jù)轉(zhuǎn)換器來講不算是最重要的電氣特性參數(shù),但它們在高分辨率成像應(yīng)用中卻具有重要意義。除非經(jīng)常接觸ADC,否則你會很容易忘記這些參數(shù)的確切定義和重要性。因此,下一節(jié)給出了這些定義的簡要回顧。

  INL和DNL的定義

  DNL誤差定義為實際量化臺階與對應(yīng)于1LSB的理想值之間的差異(見圖1a)。對于一個理想ADC,其微分非線性為DNL = 0LSB,也就是說每個模擬量化臺階等于1LSB (1LSB = VFSR/2N,其中VFSR為滿量程電壓,N是ADC的分辨率),跳變值之間的間隔為精確的1LSB。若DNL誤差指標(biāo)≤ 1LSB,就意味著傳輸函數(shù)具有保證的單調(diào)性,沒有丟碼。當(dāng)一個ADC的數(shù)字量輸出隨著模擬輸入信號的增加而增加時(或保持不變),就稱其具有單調(diào)性,相應(yīng)傳輸函數(shù)曲線的斜率沒有變號。DNL指標(biāo)是在消除了靜態(tài)增益誤差的影響后得到的。具體定義如下:

  DNL = |[(VD+1- VD)/VLSB-IDEAL - 1] |,其中0 < D < 2N - 2

  VD是對應(yīng)于數(shù)字輸出代碼D的輸入模擬量,N是ADC分辨率,VLSB-IDEAL是兩個相鄰代碼的理想間隔。較高數(shù)值的DNL增加了量化結(jié)果中的噪聲和寄生成分,限制了ADC的性能,表現(xiàn)為有限的信號-噪聲比指標(biāo)(SNR)和無雜散動態(tài)范圍指標(biāo)(SFDR)。

  圖1a. 要保證沒有丟碼和單調(diào)的轉(zhuǎn)移函數(shù),ADC的DNL必須小于1LSB。

  INL誤差表示實際傳輸函數(shù)背離直線的程度,以LSB或滿量程的百分比(FSR)來度量。這樣,INL誤差直接依賴于與之相比較的直線的選取。至少有兩個定義是常用的:“最佳直線INL”和“端點INL” (見圖1b):

  最佳直線INL定義中包含了關(guān)于失調(diào)(截距)和增益(斜率)誤差的信息,以及傳輸函數(shù)的位置(在后面討論)。它定義了一條最接近ADC實際傳輸函數(shù)的直線。沒有明確定義直線的精確位置,但這種方法卻具有最好的可重復(fù)性,能夠真正描述器件的線性特征。

  端點INL所采用的直線經(jīng)過轉(zhuǎn)換器傳輸函數(shù)的兩個端點,因而也就確定了直線的精確位置。這樣,對于一個N位ADC來講,這條直線就由其零點(全0)和其滿度(全1)點確定。

  最佳直線方法通常被作為首選,因為它能產(chǎn)生比較好的結(jié)果。INL是在扣除了靜態(tài)失調(diào)和增益誤差后的測量結(jié)果,可用下式表示:

  INL = | [(VD - VZERO)/VLSB-IDEAL] - D |,其中0 < D < 2N-1

  VD是數(shù)字輸出碼D對應(yīng)的模擬輸入,N是ADC的分辨率,VZERO是對應(yīng)于全零輸出碼的最低模擬輸入,VLSB-IDEAL是兩個相鄰代碼的理想間隔。

  圖1b. 最佳直線法和端點法是定義ADC線性特性的兩種可行辦法

  轉(zhuǎn)移函數(shù)

  理想ADC的轉(zhuǎn)移函數(shù)是階梯狀的,其中每一個臺階對應(yīng)于某個特定的數(shù)字輸出代碼,而每一次階躍代表兩個相鄰代碼間的轉(zhuǎn)變。必須確定這些階躍所對應(yīng)的輸入電壓,以便對ADC的許多特性參數(shù)進(jìn)行規(guī)范。這項任務(wù)會極為復(fù)雜,尤其是對于高速轉(zhuǎn)換器中充滿噪聲的過渡狀態(tài),以及那些接近于最終結(jié)果、并變化緩慢的數(shù)字量。

  過渡狀態(tài)沒有在圖1b中顯著標(biāo)出,而是作為一種概率函數(shù)表達(dá),更為接近實際。當(dāng)慢慢增加的輸入電壓經(jīng)過過渡點時,ADC將一個接一個地輸出相鄰代碼。按照定義,在過渡點對應(yīng)的輸入電壓下,ADC輸出相鄰兩個代碼的幾率相等。

  正確的過渡

  過渡電壓是指輸出數(shù)碼在兩個相鄰代碼間發(fā)生跳變時輸入電壓。名義模擬值,對應(yīng)于兩個相鄰過渡電壓之間的某輸入電壓所產(chǎn)生的數(shù)字輸出碼,定義為此范圍的中點(50%點)。如果過渡間隔的邊界已知,該50%點很容易算出。過渡點的確定可以通過測量某一個區(qū)間,然后將該區(qū)間除以其間出現(xiàn)過的相鄰代碼的次數(shù)后得到。

  測試靜態(tài)INL和DNL的一般裝置

  INL和DNL可以利用準(zhǔn)直流的斜坡電壓或低頻正弦波作為輸入來進(jìn)行測量。一個簡單的直流(斜坡)測試可能需要一個邏輯分析儀,一個高精度DAC (可選),一個可以掃描待測器件(DUT)輸入范圍的高精密直流源,和一個可連接PC或X-Y繪圖儀的控制接口。

  如果設(shè)備中包含有高精度DAC (精度比待測器件高得多),邏輯分析儀能直接處理ADC的輸出數(shù)據(jù)來監(jiān)測失調(diào)和增益誤差。精密信號源產(chǎn)生一個測試電壓供給待測器件,并使測試電壓從零刻度到滿刻度緩慢掃過ADC的輸入范圍。經(jīng)由DAC重構(gòu)后,從ADC輸入測試電壓中減去對應(yīng)的DAC輸出電平,就產(chǎn)生一個小的電壓差(VDIFF),這個電壓可以用X-Y繪圖儀顯示出來,并且和INL、DNL誤差聯(lián)系起來。量化電平的改變反映了微分非線性,而VDIFF與零的偏移代表積分非線性。

  積分型模擬伺服環(huán)

  另一種辦法也可以用來測試ADC的靜態(tài)線性參數(shù),與前面的辦法相似但更復(fù)雜一些,這就是使用積分型模擬伺服環(huán)。這種方法通常是用于要求高精度測量、而對測量速度沒有要求的測試設(shè)備。

  典型的模擬伺服環(huán)(見圖2)包含一個積分器和兩個電流源,連接于ADC輸入端。其中一個電流源向積分器注入電流,另一個則吸出電流。數(shù)值比較器連接于ADC輸出并對兩個電流源進(jìn)行控制。數(shù)值比較器的另一輸入由PC控制,后者可以對N位轉(zhuǎn)換器的2N - 1個測試碼進(jìn)行掃描。

  圖2. 模擬積分伺服環(huán)的電路配置

  如果環(huán)路反饋的極性正確的話,數(shù)值比較器就會驅(qū)使電流源“伺服”模擬輸入跟隨給定的代碼跳變。理想情況下,這將在模擬輸入端產(chǎn)生一個小的三角波。數(shù)值比較器控制斜坡信號的方向和速度。在跟隨一次跳變時積分器的斜率必須快,而在采用精密數(shù)字電壓表(DVM)進(jìn)行測量時,為了降低疊加的三角波過沖峰值,又要求積分器足夠慢。

  在MAX108的INL/DNL測試中,伺服板通過兩個連接器連接到*估板(見圖3)。第一個連接器建立起MAX108的主(或副)輸出端口和數(shù)值比較器的鎖存輸入口(P)的連接。第二個連接器將伺服環(huán)(數(shù)值比較器的Q端口)和用于生成參照碼的計算機(jī)連接起來。

  圖3. 借助MAX108EVKIT和模擬積分伺服環(huán),該測試裝置可以確定MAX108的INL和DNL特性。

  數(shù)值比較器的判決結(jié)果解碼后通過P > QOUT輸出端輸出并送往積分器單元。每一次的比較結(jié)果都獨立地控制開關(guān)的邏輯輸入,驅(qū)動積分電路產(chǎn)生出滿足需要的斜坡電壓,供給待測器件的兩路輸入。這種方法具有其優(yōu)越性,但也有一些不足之處:

  為了降低噪聲,三角斜坡應(yīng)該具有低的dV/dt。這有利于產(chǎn)生可重復(fù)的數(shù)碼,但要獲得精確測量它需要很長的積分時間。

  正、負(fù)斜坡的斜率必須匹配方可達(dá)到50%點,并且必須對低電平三角波取平均后才可獲得所需要的直流電平。

  在設(shè)計積分器時常常要求仔細(xì)選擇充電電容。為了盡量減小由于電容的“存儲效應(yīng)”而造成的潛在誤差,應(yīng)選擇具有低介質(zhì)吸收的積分電容。

  測量精度正比于積分時間而反比于建立時間。

  將一個數(shù)字電壓表連接到模擬積分伺服環(huán)中,就可測出INL/DNL誤差與輸出量的關(guān)系(圖4a和圖4b)。值得注意的是,INL與輸出碼關(guān)系曲線中的拋物線形或弓形曲線表明偶次諧波占主導(dǎo)地位,若曲線呈“S狀”,則說明奇次諧波占主導(dǎo)地位。

  圖4a. 該曲線給出了MAX108 ADC的典型積分非線性特性,由模擬積分伺服環(huán)測得。

  圖4b. 該曲線給出了MAX108 ADC的典型微分非線性特性,由模擬積分伺服環(huán)測得。

  為了消除上述方法的缺陷,可以對伺服環(huán)中的積分單元加以改進(jìn),代之以一個L位的逐次逼近寄存器(SAR) (用于捕獲待測器件的輸出碼)、一個L位DAC、以及一個簡單的平均值電路。再結(jié)合一個數(shù)值比較器,該電路就組成了一個逐次逼近型轉(zhuǎn)換器結(jié)構(gòu)(見圖5和后續(xù)的“SAR轉(zhuǎn)換器”部分),其中,由數(shù)值比較器對DAC進(jìn)行控制、讀取其輸出、并完成逐次逼近。同時,DAC提供一個高分辨率的直流電平給被測N位ADC的輸入。在這個實例中,采用一個16位DAC將ADC校準(zhǔn)至1/8LSB精度,同時獲得最可信轉(zhuǎn)移曲線。

  圖5. 用逐次逼近寄存器和DAC結(jié)構(gòu)取代模擬伺服環(huán)中的積分器單元

  當(dāng)接近終值時,由于受到噪聲的影響,數(shù)值比較器會來回跳動而變得不穩(wěn)定,此時,平均值電路的優(yōu)勢就突顯出來了。平均值電路包含兩個除法計數(shù)器。“參考”計數(shù)器具有2M個時鐘的周期,其中M是一個可編程的整數(shù),用來控制計數(shù)周期(同時也決定了測量時間)。“數(shù)據(jù)”計數(shù)器僅在數(shù)值比較器輸出為高時遞增,其周期等于前者的一半,即2M-1個時鐘。

  參考計數(shù)器和數(shù)據(jù)計數(shù)器共同工作的效果是對高、低電平的數(shù)量進(jìn)行了平均,結(jié)果被保存于一個觸發(fā)器,并進(jìn)而傳送到SAR寄存器。這個過程重復(fù)16次(在本例中)后便產(chǎn)生了完整的輸出碼。和前面的方法一樣,它也有優(yōu)點和不足之處:

  測試裝置的輸入電壓由數(shù)字量定義,這樣可以簡便地修改求取平均值的測式樣點。

  逐次逼近方式提供給待測器件模擬輸入的是一個直流電平,而非斜坡電壓。

  不足之處在于,反饋環(huán)中的DAC限制了輸入電壓的分辨率。

  SAR轉(zhuǎn)換器

  SAR轉(zhuǎn)換器的工作類似于舊時藥劑師的天平。一邊是未知的輸入采樣,另一邊是由SAR/DAC結(jié)構(gòu)產(chǎn)生的首個砝碼(最高有效位,等于滿量程輸出的一半)。如果未知重量大于1/2FSR,則保留首個砝碼并再增加1/4FSR。否則,用1/4FSR砝碼代之。

  將這個步驟重復(fù)N次,從MSB到LSB,SAR轉(zhuǎn)換器就可得到所需要的輸出代碼。N是SAR結(jié)構(gòu)中DAC的分辨率,每個砝碼代表1個二進(jìn)位。

  INL和DNL的動態(tài)測試

  要測定ADC的動態(tài)非線性,可以對其施加一個滿度正弦輸入,然后在其全功率輸入帶寬內(nèi)測量轉(zhuǎn)換器的信噪比(SNR)。對于一個理想的N位轉(zhuǎn)換器,理論SNR (僅考慮量化噪聲,無失真)如下:

  SNR (單位為dB) = N×6.02 +1.76

  這個公式包含了瞬變、積分非線性和采樣時間的不確定性等效應(yīng)的影響。除此之外的非線性成分可以通過測量恒頻輸入時的SNR來獲得,并可得到一個隨輸入信號幅度的變化關(guān)系。例如,使信號幅度掃過整個輸入范圍,從零到滿量程或者反之,當(dāng)輸入幅度逼近轉(zhuǎn)換器滿量程時,轉(zhuǎn)換輸出將與信號源發(fā)生較大偏移。要確定產(chǎn)生這種偏移,排除失真和時鐘不穩(wěn)定性因素的原因,可采用頻譜分析儀分析量化噪聲與頻率的關(guān)系。

  還有很多其他方法也可以用來測試各種高速和低速數(shù)據(jù)轉(zhuǎn)換器的靜態(tài)和動態(tài)INL、DNL。本文意在使讀者更好地理解典型工作特性(TOC)的產(chǎn)生,所使用的工具和技術(shù)很簡單,但極為巧妙和精確。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉