在近紅外(NIR)光譜分析領(lǐng)域中,一個將便攜性與高性能實驗室系統(tǒng)的準(zhǔn)確性和功能性組合在一起的系統(tǒng)將極大地改進實時分析。由一塊電池供電的小型手持式光譜分析儀的開發(fā)可以實現(xiàn)對工業(yè)過程、或食品成熟度的評估在現(xiàn)場進行更有效的監(jiān)控。
大多數(shù)色散光譜分析測量在一開始采用的都是同樣的方式。被分析的光通過一個小狹縫;這個狹縫與一個光柵組合在一起,共同控制這個儀器的分辨率。這個衍射光柵專門設(shè)計用于以已知的角度反射不同波長的光。這個波長的空間分離使得其它系統(tǒng)可以根據(jù)波長來測量光強度。
傳統(tǒng)光譜測量架構(gòu)的主要不同之處在于散射光的測量方式。兩種常見的方法有(1)與散射光物理掃描組合在一起的單元素(或單點)探測器,以及(2)將散射光在一組探測器上成像。
使用MEMS技術(shù)的方法使用具有一個單點探測器、基于光學(xué)微機電系統(tǒng) (MEMS) 陣列技術(shù)的全新方法可以克服傳統(tǒng)光譜分析方法中的很多限制。在基于單點探測器的系統(tǒng)中,一個固態(tài)光學(xué)MEMS陣列用簡單、空間波長濾波器取代了傳統(tǒng)的電動光柵。這個方法可以在消除精細控制電動系統(tǒng)中問題的同時,利用單點探測器的性能優(yōu)勢。近些年,此類系統(tǒng)已經(jīng)投入生產(chǎn),其中,掃描光柵被取代,并且MEMS器件過濾每一個特定波長進入單點探測器。這個方法在實現(xiàn)更加小巧和穩(wěn)健耐用光譜分析儀的同時,也表現(xiàn)出很高的性能。
相對于線性陣列探測器架構(gòu),光學(xué)MEMS陣列的使用具有數(shù)個優(yōu)勢。首先,可以使用更大的單元素探測器,以提高采光量,并極大降低系統(tǒng)成本和復(fù)雜度,這對于紅外系統(tǒng)更是如此。此外,由于不使用陣列探測器,像素到像素噪聲被消除了,而這可以極大地提升信噪比(SNR)性能。SNR性能的提高可以在更短時間內(nèi)獲得更加準(zhǔn)確的測量結(jié)果。
在一個使用MEMS技術(shù)的光譜分析系統(tǒng)中,衍射光柵和聚焦元件的功能與之前一樣,但來自聚焦元件的光在MEMS陣列上成像。要選擇一個用于分析的波長,一個特定的光譜響應(yīng)波段被激活,這樣的話,就可以將光引入到單點探測器中進行采集和測量。
如果MEMS器件高度可靠,能夠生成可預(yù)計的濾波器響應(yīng),并且在不同的時間和溫度下保持恒定,那么這些優(yōu)勢就可以實現(xiàn)。
將一個DLP® 芯片或數(shù)字微鏡器件(DMD)用作一個空間光調(diào)制器,并且在一個光譜分析儀系統(tǒng)架構(gòu)中將其用作MEMS器件的話,可以克服數(shù)個難題。首先,使用一組鋁制微鏡來接通和關(guān)閉進入單點探測器的光,這在廣泛的波長范圍內(nèi)是光學(xué)有效的。其次,數(shù)字微鏡的打開和關(guān)閉狀態(tài)由機械止動裝置和互補金屬氧化物半導(dǎo)體(CMOS)靜止隨機訪問存儲器(SRAM)單元的鎖存電路控制,從而提供固定的電壓鏡控制。這個固定電壓、靜止控制意味著這個系統(tǒng)不需要機械掃描或模擬控制環(huán)路,并且能夠簡化校準(zhǔn)。它還使得光譜分析儀設(shè)計更能免受溫度、老化或振動等錯誤源的影響。
DMD的可編程屬性具有很多優(yōu)勢。其中某項優(yōu)勢會在進行光譜分析儀架構(gòu)設(shè)計時顯現(xiàn)——如果以被用作濾波器的微鏡的尋址列為基礎(chǔ)。由于DMD分辨率通常高于所需的光譜,DMD區(qū)域會出現(xiàn)欠填充的情況,并且會對光譜過采樣。這使得波長選擇完全可編程,并且在光引擎出現(xiàn)極端機械位移的情況下,將額外微鏡用作重新校準(zhǔn)列。
此外, DMD是一個二維可編程陣列,這為用戶提供高度的靈活性。通過選擇不同的列數(shù)量,可以調(diào)節(jié)分辨率和吞吐量。掃描時間可動態(tài)調(diào)整,如此一來,用戶可對所需波長進行更長時間、更加詳細的檢查,從而更好地使用儀器時間和功能。此外,相對于固定濾波器器具1,諸如采用的Hadamard圖形等高級孔徑編碼技術(shù),可實現(xiàn)高度的靈活性和更高性能。
總之,與目前的光譜分析系統(tǒng)相比,使用DMD的光譜分析器件可實現(xiàn)更高分辨率、更高靈活性、更加穩(wěn)健耐用、更小的外形尺寸和更低的成本,從而使得它們對于廣泛的商業(yè)和工業(yè)應(yīng)用更有吸引力。
單探測器架構(gòu)消除噪聲目前基于線性陣列的光譜分析儀主要受到兩個因素的限制。首先,探測器的波長選擇受到像素孔徑的限制。探測器的尺寸決定了采集到的光量,從而影響SNR。諸如Hamamatsu G9203-256的常見磷化砷鎵銦(InGaAs)256像素線性陣列的尺寸為50微米 x 500微米。相反地,一個數(shù)字微鏡陣列是一個完全可編程的矩陣,可以針對應(yīng)用來配置列的數(shù)量和掃描技術(shù)。這可以將更大的信號呈現(xiàn)給通常與DMD一同使用的更大的1毫米或2毫米的單點探測器。將窄帶光過濾到一個線性陣列中——通常是50微米寬像素——也許會出現(xiàn)串?dāng)_的問題。像素到像素干擾會成為讀取過程中產(chǎn)生噪聲的主要原因。這些干擾可通過單探測器架構(gòu)消除。此外, 通過利用1kHz至4kHz的數(shù)字微鏡掃描速度,單點探測器可以達到與平行多點采樣相類似的駐留時間。對于基于MEMS ——或基于DMD——的緊湊型光譜分析儀引擎,結(jié)果顯示SNR的范圍大于10000:1。
對于超級移動光譜分析儀十分關(guān)鍵的小型、高分辨率2D MEMS陣列
為了盡可能地提高性能,用戶需要考慮可被用于將光線反射至探測器的MEMS總面積。然后,將這個面積與可用單點探測器孔徑尺寸仔細匹配。
一個采用5.4微米微鏡的DMD具有超過40萬個可用像素,并且可以針對700納米至2500納米的波長進行優(yōu)化。該款DMD是DLP2010NIR,它采用一個被稱為TRP的全新像素架構(gòu)。如圖1中所見,這個像素提供17度的傾斜角。DLP2010NIR在一個評估模塊中運行;這個評估模塊提供針對光譜分析應(yīng)用場景的獨特光學(xué)架構(gòu)。一個利用17度接通和關(guān)閉角度的光學(xué)路徑可以用一個盡可能減少散射光的小巧引擎實現(xiàn)高性能感測分辨率。