當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀] 自從AlexNet一舉奪得ILSVRC 2012 ImageNet圖像分類競(jìng)賽的冠軍后,卷積神經(jīng)網(wǎng)絡(luò)(CNN)的熱潮便席卷了整個(gè)計(jì)算機(jī)視覺領(lǐng)域。CNN模型火速替代了傳統(tǒng)人工設(shè)計(jì)(hand-cra

自從AlexNet一舉奪得ILSVRC 2012 ImageNet圖像分類競(jìng)賽的冠軍后,卷積神經(jīng)網(wǎng)絡(luò)(CNN)的熱潮便席卷了整個(gè)計(jì)算機(jī)視覺領(lǐng)域。CNN模型火速替代了傳統(tǒng)人工設(shè)計(jì)(hand-crafted)特征和分類器,不僅提供了一種端到端的處理方法,還大幅度地刷新了各個(gè)圖像競(jìng)賽任務(wù)的精度,更甚者超越了人眼的精度(LFW人臉識(shí)別任務(wù))。CNN模型在不斷逼近計(jì)算機(jī)視覺任務(wù)的精度極限的同時(shí),其深度和尺寸也在成倍增長。
 

表1 幾種經(jīng)典模型的尺寸,計(jì)算量和參數(shù)數(shù)量對(duì)比

Model Model Size(MB) Million
Mult-Adds Million
Parameters
AlexNet[1] >200 720 60 
VGG16[2] >500 15300 138 
GoogleNet[3] ~50 1550 6.8 
IncepTIon-v3[4] 90-100 5000 23.2

隨之而來的是一個(gè)很尷尬的場(chǎng)景:如此巨大的模型只能在有限的平臺(tái)下使用,根本無法移植到移動(dòng)端和嵌入式芯片當(dāng)中。就算想通過網(wǎng)絡(luò)傳輸,但較高的帶寬占用也讓很多用戶望而生畏。另一方面,大尺寸的模型也對(duì)設(shè)備功耗和運(yùn)行速度帶來了巨大的挑戰(zhàn)。因此這樣的模型距離實(shí)用還有一段距離。

在這樣的情形下,模型小型化與加速成了亟待解決的問題。其實(shí)早期就有學(xué)者提出了一系列CNN模型壓縮方法,包括權(quán)值剪值(prunning)和矩陣SVD分解等,但壓縮率和效率還遠(yuǎn)不能令人滿意。

近年來,關(guān)于模型小型化的算法從壓縮角度上可以大致分為兩類:從模型權(quán)重?cái)?shù)值角度壓縮和從網(wǎng)絡(luò)架構(gòu)角度壓縮。另一方面,從兼顧計(jì)算速度方面,又可以劃分為:僅壓縮尺寸和壓縮尺寸的同時(shí)提升速度。

本文主要討論如下幾篇代表性的文章和方法,包括SqueezeNet[5]、Deep Compression[6]、XNorNet[7]、DisTIlling[8]、MobileNet[9]和ShuffleNet[10],也可按照上述方法進(jìn)行大致分類:

表2 幾種經(jīng)典壓縮方法及對(duì)比

Method Compression Approach Speed ConsideraTIon
SqueezeNet architecture No 
Deep Compression weights No 
XNorNet weights Yes 
DisTIlling architecture No 
MobileNet architecture Yes 
ShuffleNet architecture Yes

一、SqueezeNet

1.1 設(shè)計(jì)思想

SqueezeNet是F. N. Iandola,S.Han等人于2016年的論文《SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size》中提出的一個(gè)小型化的網(wǎng)絡(luò)模型結(jié)構(gòu),該網(wǎng)絡(luò)能在保證不損失精度的同時(shí),將原始AlexNet壓縮至原來的510倍左右(< 0.5MB)。

SqueezeNet的核心指導(dǎo)思想是——在保證精度的同時(shí)使用最少的參數(shù)。

而這也是所有模型壓縮方法的一個(gè)終極目標(biāo)。

基于這個(gè)思想,SqueezeNet提出了3點(diǎn)網(wǎng)絡(luò)結(jié)構(gòu)設(shè)計(jì)策略:

策略 1.將3x3卷積核替換為1x1卷積核。

這一策略很好理解,因?yàn)?個(gè)1x1卷積核的參數(shù)是3x3卷積核參數(shù)的1/9,這一改動(dòng)理論上可以將模型尺寸壓縮9倍。

策略 2.減小輸入到3x3卷積核的輸入通道數(shù)。

我們知道,對(duì)于一個(gè)采用3x3卷積核的卷積層,該層所有卷積參數(shù)的數(shù)量(不考慮偏置)為:

式中,N是卷積核的數(shù)量,也即輸出通道數(shù),C是輸入通道數(shù)。

因此,為了保證減小網(wǎng)絡(luò)參數(shù),不僅僅需要減少3x3卷積核的數(shù)量,還需減少輸入到3x3卷積核的輸入通道數(shù)量,即式中C的數(shù)量。

策略 3.盡可能的將降采樣放在網(wǎng)絡(luò)后面的層中。

在卷積神經(jīng)網(wǎng)絡(luò)中,每層輸出的特征圖(feature map)是否下采樣是由卷積層的步長或者池化層決定的。而一個(gè)重要的觀點(diǎn)是:分辨率越大的特征圖(延遲降采樣)可以帶來更高的分類精度,而這一觀點(diǎn)從直覺上也可以很好理解,因?yàn)榉直媛试酱蟮妮斎肽軌蛱峁┑男畔⒕驮蕉唷?/p>

上述三個(gè)策略中,前兩個(gè)策略都是針對(duì)如何降低參數(shù)數(shù)量而設(shè)計(jì)的,最后一個(gè)旨在最大化網(wǎng)絡(luò)精度。

1.2 網(wǎng)絡(luò)架構(gòu)

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉