無人駕駛的重要性不言而喻,小編相信在不久的未來,無人駕駛將可再度突破。上篇文章中,小編對無人駕駛的感知層和定位層有所闡述。為增進大家對無人駕駛的了解,小編將對無人駕駛的規(guī)劃層、控制層予以介紹。如果你對無人駕駛具有興趣,不妨繼續(xù)往下閱讀哦。
一、規(guī)劃
1.任務規(guī)劃
無人駕駛規(guī)劃系統(tǒng)的分層結構設計源于2007年舉辦的DAPRA城市挑戰(zhàn)賽,在比賽中多數(shù)參賽隊都將無人車的規(guī)劃模塊分為三層設計:任務規(guī)劃,行為規(guī)劃和動作規(guī)劃,其中,任務規(guī)劃通常也被稱為路徑規(guī)劃或者路由規(guī)劃(Route Planning),其負責相對頂層的路徑規(guī)劃,例如起點到終點的路徑選擇。
我們可以把我們當前的道路系統(tǒng)處理成有向網(wǎng)絡圖(Directed Graph Network),這個有向網(wǎng)絡圖能夠表示道路和道路之間的連接情況,通行規(guī)則,道路的路寬等各種信息,其本質(zhì)上就是我們前面的定位小節(jié)中提到的高精度地圖的“語義”部分,這個有向網(wǎng)絡圖被稱為路網(wǎng)圖(Route Network Graph),如下圖所示:
這樣的路網(wǎng)圖中的每一個有向邊都是帶權重的,那么,無人車的路徑規(guī)劃問題,就變成了在路網(wǎng)圖中,為了讓車輛達到某個目標(通常來說是從A地到B地),基于某種方法選取最優(yōu)(即損失最小)的路徑的過程,那么問題就變成了一個有向圖搜索問題,傳統(tǒng)的算法如迪科斯徹算法(Dijkstra’s Algorithm)和A*算法(A* Algorithm)主要用于計算離散圖的最優(yōu)路徑搜索,被用于搜索路網(wǎng)圖中損失最小的路徑。
2.行為規(guī)劃
行為規(guī)劃有時也被稱為決策制定(Decision Maker),主要的任務是按照任務規(guī)劃的目標和當前的局部情況(其他的車輛和行人的位置和行為,當前的交通規(guī)則等),作出下一步無人車應該執(zhí)行的決策,可以把這一層理解為車輛的副駕駛,他依據(jù)目標和當前的交通情況指揮駕駛員是跟車還是超車,是停車等行人通過還是繞過行人等等。
行為規(guī)劃的一種方法是使用包含大量動作短語的復雜有限狀態(tài)機(Finite State Machine,F(xiàn)SM)來實現(xiàn),有限狀態(tài)機從一個基礎狀態(tài)出發(fā),將根據(jù)不同的駕駛場景跳轉到不同的動作狀態(tài),將動作短語傳遞給下層的動作規(guī)劃層,下圖是一個簡單的有限狀態(tài)機:
如上圖所示,每個狀態(tài)都是對車輛動作的決策,狀態(tài)和狀態(tài)之間存在一定的跳轉條件,某些狀態(tài)可以自循環(huán)(比如上圖中的循跡狀態(tài)和等待狀態(tài))。雖然是目前無人車上采用的主流行為決策方法,有限狀態(tài)機仍然存在著很大的局限性:首先,要實現(xiàn)復雜的行為決策,需要人工設計大量的狀態(tài);車輛有可能陷入有限狀態(tài)機沒有考慮過的狀態(tài);如果有限狀態(tài)機沒有設計死鎖保護,車輛甚至可能陷入某種死鎖。
3.動作規(guī)劃
通過規(guī)劃一系列的動作以達到某種目的(比如說規(guī)避障礙物)的處理過程被稱為動作規(guī)劃。通常來說,考量動作規(guī)劃算法的性能通常使用兩個指標:計算效率(Computational Efficiency)和完整性(Completeness),所謂計算效率,即完成一次動作規(guī)劃的處理效率,動作規(guī)劃算法的計算效率在很大程度上取決于配置空間(Configuration Space),如果一個動作規(guī)劃算法能夠在問題有解的情況下在有限時間內(nèi)返回一個解,并且能夠在無解的情況下返回無解,那么我們稱該動作規(guī)劃算法是完整的。
配置空間:一個定義了機器人所有可能配置的集合,它定義了機器人所能夠運動的維度,最簡單的二維離散問題,那么配置空間就是[x, y],無人車的配置空間可以非常復雜,這取決于所使用的運動規(guī)劃算法。
在引入了配置空間的概念以后,那么無人車的動作規(guī)劃就變成了:在給定一個初始配置(Start Configuration),一個目標配置(Goal Configuration)以及若干的約束條件(Constraint)的情況下,在配置空間中找出一系列的動作到達目標配置,這些動作的執(zhí)行結果就是將無人車從初始配置轉移至目標配置,同時滿足約束條件。
在無人車這個應用場景中,初始配置通常是無人車的當前狀態(tài)(當前的位置,速度和角速度等),目標配置則來源于動作規(guī)劃的上一層——行為規(guī)劃層,而約束條件則是車輛的運動限制(最大轉角幅度,最大加速度等)。
顯然,在高維度的配置空間來動作規(guī)劃的計算量是非常巨大的,為了確保規(guī)劃算法的完整性,我們不得不搜索幾乎所有的可能路徑,這就形成了連續(xù)動作規(guī)劃中的“維度災難”問題。目前動作規(guī)劃中解決該問題的核心理念是將連續(xù)空間模型轉換成離散模型,具體的方法可以歸納為兩類:組合規(guī)劃方法(Combinatorial Planning)和基于采樣的規(guī)劃方法(Sampling-Based Planning)。
運動規(guī)劃的組合方法通過連續(xù)的配置空間找到路徑,而無需借助近似值。由于這個屬性,它們可以被稱為精確算法。組合方法通過對規(guī)劃問題建立離散表示來找到完整的解,如在Darpa城市挑戰(zhàn)賽(Darpa Urban Challenge)中,CMU的無人車BOSS所使用的動作規(guī)劃算法,他們首先使用路徑規(guī)劃器生成備選的路徑和目標點(這些路徑和目標點事融合動力學可達的),然后通過優(yōu)化算法選擇最優(yōu)的路徑。
另一種離散化的方法是網(wǎng)格分解方法(Grid Decomposition Approaches),在將配置空間網(wǎng)格化以后我們通常能夠使用離散圖搜索算法(如A*)找到一條優(yōu)化路徑。
基于采樣的方法由于其概率完整性而被廣泛使用,最常見的算法如PRM(Probabilistic Roadmaps),RRT(Rapidly-Exploring Random Tree),F(xiàn)MT(Fast-Marching Trees),在無人車的應用中,狀態(tài)采樣方法需要考慮兩個狀態(tài)的控制約束,同時還需要一個能夠有效地查詢采樣狀態(tài)和父狀態(tài)是否可達的方法。后文我們將詳細介紹State-LatticePlanners,一種基于采樣的運動規(guī)劃算法。
二、控制
控制層作為無人車系統(tǒng)的最底層,其任務是將我們規(guī)劃好的動作實現(xiàn),所以控制模塊的評價指標即為控制的精準度??刂葡到y(tǒng)內(nèi)部會存在測量,控制器通過比較車輛的測量和我們預期的狀態(tài)輸出控制動作,這一過程被稱為反饋控制(Feedback Control)。
反饋控制被廣泛的應用于自動化控制領域,其中最典型的反饋控制器當屬PID控制器(Proportional-Integral-Derivative Controller),PID控制器的控制原理是基于一個單純的誤差信號,這個誤差信號由三項構成:誤差的比例(Proportion),誤差的積分(Integral)和誤差的微分(Derivative)。
PID控制因其實現(xiàn)簡單,性能穩(wěn)定到目前仍然是工業(yè)界最廣泛使用的控制器,但是作為純反饋控制器,PID控制器在無人車控制中卻存在一定的問題:PID控制器是單純基于當前誤差反饋的,由于制動機構的延遲性,會給我們的控制本身帶來延遲,而PID由于內(nèi)部不存在系統(tǒng)模型,故PID不能對延遲建模,為了解決這一問題,我們引入基于模型預測的控制方法。
預測模型:基于當前的狀態(tài)和控制輸入預測未來一段時間的狀態(tài)的模型,在無人車系統(tǒng)中,通常是指車輛的運動學/動力學模型;
反饋校正:對模型施加了反饋校正的過程,使預測控制具有很強的抗擾動和克服系統(tǒng)不確定性的能力。
滾動優(yōu)化:滾動地優(yōu)化控制序列,以得到和參考軌跡最接近的預測序列。
參考軌跡:即設定的軌跡。
下圖表示模型預測控制的基本結構,由于模型預測控制基于運動模型進行優(yōu)化,在PID控制中面臨的控制延時問題可以再建立模型考慮進去,所以模型預測控制在無人車控制中具有很高的應用價值。
以上便是此次小編帶來的“無人駕駛”相關內(nèi)容,通過本文,希望大家對無人駕駛的規(guī)劃層和控制層具備一定的了解。如果你喜歡本文,不妨持續(xù)關注我們網(wǎng)站哦,小編將于后期帶來更多精彩內(nèi)容。最后,十分感謝大家的閱讀,have a nice day!