當前位置:首頁 > 電源 > 電源
[導(dǎo)讀]為了解決傳統(tǒng)倍流同步整流變流器的磁性元件和連接端子較多的問題,磁集成(integratedmagnetics)技術(shù)已經(jīng)應(yīng)用在這種拓撲中。對幾種磁集成倍流整流拓撲進行了分析比較。最后給出了1V,20W的直流/直流變流器實驗?zāi)P鸵?

為了解決傳統(tǒng)倍流同步整流變流器的磁性元件和連接端子較多的問題,磁集成(integratedmagnetics)技術(shù)已經(jīng)應(yīng)用在這種拓撲中。對幾種磁集成倍流整流拓撲進行了分析比較。最后給出了1V,20W的直流/直流變流器實驗?zāi)P鸵约皩嶒灢ㄐ巍?/p>

關(guān)鍵詞:倍流整流;磁集成;拓撲

0    引言

    在現(xiàn)今的大電流DC/DC變流器中,倍流整流(CDR)拓撲結(jié)構(gòu)由于它本身的特點,已經(jīng)成為最優(yōu)的輸出整流拓撲選擇。與傳統(tǒng)的帶中間抽頭的整流拓撲相比較,其變壓器副邊只有一組繞組,結(jié)構(gòu)上相對比較簡單;同時CDR副邊繞組的匝數(shù)也較少,在大電流情況下,副邊繞組的損耗就會降低;且它的輸出有兩個濾波電感,流經(jīng)每個電感上的電流只有負載電流的一半,所以,輸出濾波電感上的功率損耗也較小,由于兩個濾波電感的存在,變流器的輸出電流/電壓紋波也相對較小。但它需要3個磁性元件,必然導(dǎo)致體積的增大,從而減小了功率密度;同時具有較多的連接端子,在電流較大時,連接端子上的功率損耗必然相對較大。為了克服以上缺點,磁集成(integrated magnetics)技術(shù)早已應(yīng)用在CDR拓撲當中。所謂磁集成就是將變流器中兩個或兩個以上的分立磁性元件(變壓器,輸入/輸出濾波電感)都繞制在一副磁芯內(nèi),從而達到減小體積,提高功率密度,減少連接端子的目的。

    本文對多種磁集成倍流整流拓撲(IM-CDR)進行了分析和比較,選出了其中較佳的拓撲,并在此IM?CDR拓撲的基礎(chǔ)上對一個輸出為1V,20W的DC/DC變流器進行了實驗,同時給出了實驗波形。特別要提出的是,當負載較大時,存儲在變壓器原邊漏感中的能量可用來實現(xiàn)副邊同步整流管的自驅(qū)動,從而降低了控制電路的復(fù)雜程度。

1    幾種磁集成倍流整流拓撲的比較

    圖1給出了到目前為止的幾種適于低壓大電流電壓調(diào)整模塊(VRM)拓撲的IM-CDR拓撲結(jié)構(gòu)。

(a)分立磁性元件的倍流整流    (b)PengC提出的IM-CDR[1]    (c)ChenWei提出的IM-CDR[2]

(d)(c)中的中間柱氣隙可不加    (e)XuPeng提出的IM-CDR[3]    (f)SunJian提出的改進型IM-CDR

圖1    IM-CDR電路結(jié)構(gòu)

    圖1(a)所示的是采用分立元件構(gòu)成的CDR電路,它一共需要3個分立的磁性元件,分別是輸出濾波電感L1和L2,以及變壓器。結(jié)果導(dǎo)致變流器體積和重量過大。同時,它的大電流連接端子也較多,這必然增加副邊的導(dǎo)通損耗。

    為了避免上述這種傳統(tǒng)CDR拓撲結(jié)構(gòu)的不足,PengC提出了一種IM-CDR電路拓撲[1],如圖1(b)所示。它將以往的CDR整流電路中的3個分立磁性元件(輸出濾波電感和變壓器)集中繞制在同一副磁芯中,結(jié)果大大地減小了變流器的體積和重量,但是,由于它副邊仍然有較多的繞組數(shù)和連接端子,使得這種CDR拓撲的應(yīng)用受到了限制。

    圖1(c)是由Chen Wei提出的CDR拓撲結(jié)構(gòu)[2]。它是將圖1(b)中的變壓器副邊繞組分解,分別繞在磁芯的兩個外磁柱上。結(jié)果使得拓撲副邊的結(jié)構(gòu)變得簡單,連接端子也相對減少。這種CDR拓撲結(jié)構(gòu)非常適合大電流變流器的應(yīng)用場合,因為它含有較少的連接端子和繞組數(shù)。且由于它的中心磁柱上有氣隙存在,原邊的激磁電感Lm就會減小,在輸出輕載時能夠?qū)崿F(xiàn)主開關(guān)的ZVS[2]。但氣隙不能開得太大,如果太大Lm就會很小,導(dǎo)致變壓器原邊的激磁電流的增大,從而增大原邊的導(dǎo)通損耗。

    圖1(d)中給出的是中心柱不開氣隙的情況,此時變壓器原邊激磁電感Lm較大,原邊繞組中的激磁電流較小,因此,原邊的導(dǎo)通損耗也較小。在這種IM-CDR拓撲中,由于原副邊繞組是分別繞在三個磁柱上的,所以,原副邊繞組間的耦合較差,導(dǎo)致變壓器原邊漏感較大,降低了變流器的性能。此外,這種中間沒有氣隙兩邊開氣隙的IM-CDR拓撲,其磁芯的生產(chǎn)比較困難。普通的EE或EI磁芯的兩個外磁柱上都沒有氣隙,要應(yīng)用于圖1(d)中的IM-CDR拓撲,就必須在外磁柱上加氣隙,結(jié)果使得它的實現(xiàn)比較困難。

    Xu Peng提出了如圖1(e)所示的IM-CDR電路拓撲[3]。它是將圖1(d)中的變壓器原邊繞組拆分,并分別繞制到磁芯的兩個外磁柱上,這樣原副邊繞組就會形成較好的耦合。并只是在中心的磁柱加氣隙,兩個外磁柱上不加氣隙。改進的IM-CDR不僅減小了變壓器原邊漏感,提高變流器性能,而且這種磁芯結(jié)構(gòu)也更加便于生產(chǎn),普通的EE和EI磁芯就可以滿足要求,還有利于減小磁芯損耗和提高效率[3]。但它的原邊存在兩組繞組,結(jié)構(gòu)要比圖1(c)及圖1(d)中的拓撲復(fù)雜。

    在上面提出的這些IM-CDR拓撲中都存在同一個問題,就是它們的輸出濾波電感值受到了限制,所以,存在相對較大的輸出電流/電壓紋波。因此,Sun Jian提出了如圖1(f)所示的電路。從結(jié)構(gòu)上與圖1(e)相比較,只是在中心的磁柱上加了一組繞組,并串在了輸出端,這就相當于在輸出端多加了一個濾波電感,從而減小了輸出電流和電壓紋波[4]。但這種結(jié)構(gòu)拓撲并不適合低壓大電流場合。

    綜上所述,圖1(c)所示的IM-CDR拓撲是最簡單的,在對輸出電流/電壓紋波要求不是很高的大電流變流器中,它是最合適的。雖然變壓器的原邊存在相對較大的漏感,但折衷考慮,它還是最優(yōu)的選擇。而且在負載電流較大的情況下,變壓器漏感可用來實現(xiàn)副邊同步整流管的自驅(qū)動。 [!--empirenews.page--]

2    實驗及其結(jié)果

    IM-CDR結(jié)構(gòu)選擇如圖1(c)所示的拓撲。從結(jié)構(gòu)上可以看出,磁芯的3個磁柱上都加了相同的氣隙(lg),這必然會導(dǎo)致變壓器原邊的漏感(Lk)的增大,但可以利用變壓器原邊漏感中的能量實現(xiàn)副邊同步整流管的自驅(qū)動(開通),同步管的關(guān)斷是通過外加驅(qū)動信號來完成的。實驗電路如圖2所示,由圖2可以看到副邊同步管的驅(qū)動電路包括一個繞組(Na),兩個二極管(Da1,Da2)和兩個MOS管(Sa1,Sa2),它的實現(xiàn)比較簡單,只需要在磁芯的中心磁柱上多加一組繞組即可。變壓器原邊采用的是對稱半橋拓撲。實驗電路的具體參數(shù)見表1所列。實驗波形圖如圖3和圖4所示。圖3是在負載電流Io=4A時測得的變壓器原邊電壓波形以及兩個同步整流管的門極驅(qū)動電壓波形圖。由于此時的負載電流較小,反映到變壓器原邊的激磁電流也較小,在原邊開關(guān)管關(guān)斷的瞬間,變壓器原邊漏感(Lk)與開關(guān)管輸出結(jié)電容(Co1,Co2)間的振蕩尖峰不夠高,不足以開通副邊的同步整流管。所以,在兩個原邊開關(guān)管都處于斷態(tài)期間內(nèi),其中一個同步整流管的體二極管必須導(dǎo)通進行續(xù)流。由于此時的負載電流不大,體二極管上的功率損耗也不明顯。隨著負載的加大,原邊的振蕩會逐漸增大,直到能夠開通副邊同步整流管。圖4所示的是負載電流Io=20A時的變壓器原邊電壓波形以及兩個同步管驅(qū)動波形。當原邊開關(guān)管關(guān)斷時,存在于漏感中的能量足夠以開通兩個同步管。然而同步管的關(guān)斷只能通過外加驅(qū)動信號來實現(xiàn)。它們分別來自于原邊開關(guān)管的門極驅(qū)動vg1和vg2。圖5是測得的變流器的效率曲線圖。

表1    實驗電路參數(shù)

參數(shù) 數(shù)值
輸入電壓Vin DC48V
輸出電壓Vo 1V
輸出電流Io 20A
工作頻率fs 315kHz
C1,C2 63V/100μF
S1,S2 IRLU2905
SR1,SR2 IRLR7843
Sa1,Sa2 IRLU120
Da1,Da2 IN4148
磁芯(Core) R-42216-EC
氣隙(lg) 0.09mm
原邊激磁電感L 76μH
原邊漏感Lk 0.8μH
變比Np:Ns 10:1
變比Ns:Na 5:1

 

圖2    實驗電路圖  [!--empirenews.page--]

圖3    Io=4A時的vp,vg3和vg4波形

圖4    Io=20A時的vp,vg3和vg4波形

圖5    變流器效率曲線圖

3    結(jié)語

    倍流同步整流拓撲在大電流變流器中的應(yīng)用越來越廣泛,但是,傳統(tǒng)的結(jié)構(gòu)上存在著磁性元件較多,體積較大等缺點,為了克服這些不足之處,磁集成技術(shù)早已經(jīng)應(yīng)用在這種拓撲當中。本文分析比較了幾種磁集成倍流整流拓撲結(jié)構(gòu),并給出了相應(yīng)的實驗電路模型。在負載較大情況下,存儲在變壓器的原邊漏感中的能量可以用來實現(xiàn)副邊同步整流管自驅(qū)動(開通)。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉