當(dāng)前位置:首頁(yè) > 電源 > 電源
[導(dǎo)讀]一 引言  DC-DC轉(zhuǎn)換器的效率和功率損耗是許多電子系統(tǒng)的一個(gè)重要特征參數(shù)??梢詼y(cè)量出這些特征參數(shù),并用下面的直觀方式進(jìn)行表達(dá):  效率 = 輸出功率 / 輸入功率 (1)  功率損耗 = 輸入功率-輸出功率

一  引言

  DC-DC轉(zhuǎn)換器的效率和功率損耗是許多電子系統(tǒng)的一個(gè)重要特征參數(shù)??梢詼y(cè)量出這些特征參數(shù),并用下面的直觀方式進(jìn)行表達(dá):

  效率 = 輸出功率 / 輸入功率         (1)

  功率損耗 = 輸入功率-輸出功率   (2)

  但是對(duì)于每個(gè)元器件做為一個(gè)單獨(dú)熱源在損耗中所占的比重,這樣的結(jié)果沒(méi)有提供任何信息。而我們的方法學(xué)能讓設(shè)計(jì)者更好地選擇針對(duì)其應(yīng)用的最佳DC-DC實(shí)現(xiàn)方案。

二  降壓轉(zhuǎn)換器的實(shí)例

  降壓轉(zhuǎn)換器中的主要熱源是高邊MOSFET、低邊MOSFET和電感器。如果我們使用電工學(xué)方法來(lái)判定高邊MOSFET的功率損耗,那么就必須測(cè)量漏極電流、漏源電壓、柵極電流和柵源電壓。不幸的是,如果不在電流路徑中引入額外的電感和干擾電路的正常工作,要在高頻DC-DC轉(zhuǎn)換器中測(cè)得這些數(shù)據(jù)是非常困難的。但借助熱成像攝像機(jī),我們研究出一種求解每個(gè)熱源功率損耗的新方法,而且不會(huì)影響電路的工作。

三  新方法的基本原理

  在一個(gè)電路中,將電能轉(zhuǎn)換為熱能的元器件是熱源。能量轉(zhuǎn)換成熱會(huì)增加熱源器件的和周?chē)h(huán)境的溫度。轉(zhuǎn)變成熱的能量就是元器件的功率損耗。整個(gè)溫升(?T)取決于功率損耗(P)和環(huán)境。對(duì)于一個(gè)在固定測(cè)試臺(tái)上的某塊PCB板,?T是功率損耗的唯一函數(shù)。因此,如果我們測(cè)量出?T,就可以推導(dǎo)計(jì)算每個(gè)熱源功率損耗的方法。

四  基本原理的推導(dǎo)

  為簡(jiǎn)單起見(jiàn),假設(shè)在PCB板上有兩個(gè)熱源(HS1和HS2)。HS1工作時(shí)不但使其自身的表面溫度會(huì)升高,也會(huì)提高HS2的表面溫度,對(duì)HS2來(lái)說(shuō)也是如此。因此,每個(gè)熱源的最終?T可以用下面的等式來(lái)表示。

  Sij (i, j = 1,2)是熱敏感度系數(shù),與熱阻的度數(shù)相同

  Pi是每個(gè)熱源的功率損耗

  等式(3)也可以擴(kuò)展到N個(gè)熱源的情況。在這種情況下,每個(gè)熱源的溫升可以由下式給出。

  S是一個(gè)N x N的矩陣

  如果我們知道S的數(shù)值,就可以由下式得到每個(gè)熱源的功率損耗。

  假設(shè)Sij與溫度或電路的工作狀態(tài)無(wú)關(guān),那么就可以由等式6確定每個(gè)Sij。

  這里,DTi是第i個(gè)熱源的溫升,Pj是第j個(gè)熱源消耗的功率。所有其他器件都不起作用。[!--empirenews.page--]

  每次我們都使用簡(jiǎn)單的直流技術(shù)給一個(gè)熱源供電,這樣就可以以非侵入式方式測(cè)量熱敏感度的系數(shù)。我們對(duì)被測(cè)器件(IC,MOSFET和電感器)施加直流電壓和電流,迫使器件開(kāi)始消耗能量,然后測(cè)出Pj。然后我們使用熱成像攝像機(jī)測(cè)量表面溫度的?Ti,接著就可以用上面的等式(6)計(jì)算出Sij。

  我們使用了新的方法學(xué)計(jì)算兩個(gè)降壓拓?fù)涞闹鳠嵩矗阂粋€(gè)使用SiC739D8 DrMOS IC的集成式功率級(jí),和一個(gè)使用兩個(gè)MOSFET的分立式功率級(jí),在分立式功率級(jí)中,Si7382DP在高邊,Si7192DP在低邊。

  A.集成式降壓轉(zhuǎn)換器

圖1

  圖1顯示了用于集成式降壓轉(zhuǎn)換器的EVB前端。這里有4個(gè)熱源:電感器(HS1),驅(qū)動(dòng)IC(HS2),高邊MOSFET(HS3)和低邊MOSFET(HS4)。SiC739 DrMOS是一個(gè)單芯片解決方案,其內(nèi)部包含的HS2、HS3和HS4靠得非常近。由于這里有4個(gè)熱源,因此S是一個(gè)4x4矩陣。

  圖2顯示了當(dāng)?shù)瓦匨OSFET的體二極管是前向偏置時(shí)(AR0x Avg. => HSx),4個(gè)熱源的溫度。

  如果 TA 為 23.3 ?C,那么,

(8)

  測(cè)得的電流I4和電壓V4分別是2.14A和0.6589V。

  P4 = I4?V4 = 1.41W    (8)

  使用公式(7)中的溫度信息,我們可以得到Si4,(i=1,2,3,4)

  S14 = 5.82            (9)

  S24 = 9.29

  S34 = 9.5

  S44 = 16.2

    重復(fù)上述過(guò)程,可以得到如下的S矩陣。

然后解出S-1,

  試驗(yàn)結(jié)果:集成式降壓轉(zhuǎn)換器

  現(xiàn)在我們可以給SiC739 EVB上電,并使用等式(5)和(11)來(lái)計(jì)算每個(gè)熱源的功率損耗。

  P1 = 0.224W, 電感器           (12)

  P2 = 0.431W, 驅(qū)動(dòng) IC

  P3 = 0.771W, 高邊MOSFET

  P4 = 0.512W, 低邊 MOSFET[!--empirenews.page--]

  根據(jù)測(cè)試結(jié)果和等式 (2):

  P1 + P3 + P4 = 1.538W

  新方法給出的結(jié)果是:

  P1 + P3 + P4 = 1.507W         (13)

  熱學(xué)方法和電工學(xué)方法之間的結(jié)果差異是由小熱源造成的,如PCB印制線(xiàn)和電容器的ESR。

  分立式降壓轉(zhuǎn)換器

使用上述步驟和圖3,我們獲得了分立式方案的S矩陣,不過(guò)沒(méi)有考慮驅(qū)動(dòng)IC的功率。

  

  

  (16)

 

  

  

  (17)

 

  

  使用上面圖4提供的信息,我們可以得到在Vin = 12V, Vo =1.3V, Io = 8A, Fs = 1MHz條件下的功率損耗。

  P1 = 0.228W, 電感器

  P2 = 0.996W, 高邊 MOSFET

  P3 = 0.789W, 低邊 MOSFET

  比較等式(18)和等式(22),我們發(fā)現(xiàn),由于兩個(gè)電路使用相同的電感器,兩個(gè)電路具有同樣的電感器損耗,這個(gè)結(jié)果和我們預(yù)想的一樣。盡管分立方案中低邊和高邊MOSFET的rDS(on)比集成式方案MOSFET的rDS(on)分別小23%和28%,集成式降壓解決方案的損耗仍然比分立式降壓方案的損耗要低。

  我們可以認(rèn)定,集成式方案的頻率更低,而頻率則與功率損耗相關(guān)。

五  總結(jié)和結(jié)論

  測(cè)量高頻DC-DC轉(zhuǎn)換器功率損耗的新方法使用了直流功率測(cè)試,和一個(gè)熱成像攝像機(jī)來(lái)測(cè)量PCB板上每個(gè)熱源的表面溫度。用新方法測(cè)得的功率損耗與用電工學(xué)方法測(cè)得的結(jié)果十分接近。新方法可以很容易地區(qū)分出象MOSFET這樣的主熱源,和象PCB印制線(xiàn)及電容器的ESR這樣的次熱源的功率損耗。試驗(yàn)結(jié)果表明,由于在低頻下工作時(shí)的損耗小,高頻集成式DC-DC轉(zhuǎn)換器的整體功率損耗比分立式DC-DC轉(zhuǎn)換器要低。



 

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶(hù)希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱(chēng),數(shù)字世界的話(huà)語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱(chēng)"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉