引言
開關電源本身種類繁多,設計方法也復雜多樣,因此研究一種簡潔的方法去快速設計出所需要的通用型高效率,低廉價格的開關電源是很有必要的。
1 開關電源工作原理
開關直流穩(wěn)壓電源是基于方波電壓的平均值與其占空比成正比以及電感、電容電路的積分特性而形成的。其基本工作原理是,先對輸入交流電壓整流,從而形成脈動直流電壓,經(jīng)過DC-DC 變換電路變壓,再通過斬波電路形成了不同脈沖寬度的高頻交流電,然后對其整流濾波輸出需要電壓電流波形。如果輸出電壓波形偏離所需值,便有電流或電壓采樣電路進行取樣反饋,經(jīng)過與比較電路的電壓值進行參數(shù)比較,把差值信號放大,從而控制開關電路的脈沖頻率f 和占空比D,以此來控制輸出端的導通狀態(tài)。因此,輸出端便可以得到所需的電壓電流值。
如圖1, 將開關電源模塊劃分為以下幾個部分。
根據(jù)電力系統(tǒng)的實際需要,通過對各個部分進行分析,便可以設計出相應的開關電源產(chǎn)品。
圖1 開關電源原理框圖。
2 TopswitchⅡ簡介
TOPSwitchⅡ 是POWER 公司生產(chǎn)的高集成的用于開關電源的專用芯片。它將功率開關管與其控制電路集成于一個芯片內(nèi),并具有自動復位,過熱保護與過流保護等功能,其功能原理圖如圖2 所示。當系統(tǒng)上電時,D 引腳變?yōu)楦唠娢?,?nèi)部電流源開始工作且片內(nèi)開關在0 位,TOPSwitch 給并接在C 引腳的電容C5(見圖2) 充電。當C5 端電壓達到5.7 V 后,自動重起電路關閉,片內(nèi)開關跳到1 位。C5 一方面提供TOPSwitch 內(nèi)部控制電路的電源,使誤差放大器開始工作,另一方面提供一反饋電流以控制開關管的占空比。MOSFET 開關管的驅(qū)動信號由內(nèi)部振蕩電路、保護電路和誤差放大電路共同產(chǎn)生。C5 兩端的電壓愈高,MOSFET 開關管驅(qū)動脈沖的占空比愈小。
3 TOPSwitch 芯片的選型
在設計開關電源時,首先就要面臨如何選擇合適的開關電源控制芯片。在選擇芯片的時候,要既能滿足要求,又不因為選型造成資源的浪費。下面就介紹利用TopswitchⅡ系列開關電源的功率損耗( PD ) 與電源效率(η),輸出功率( Po ) 關系曲線,快速選擇芯片的型號,從而完成寬范圍輸入的通用開關電源的設計。
圖2 TOPSwitch芯片內(nèi)部原理圖
3.1 PD,η, Po 關系曲線
寬范圍輸入的交流電壓為85~ 265 V, 在這種條件下,TOP221~ TOP227 系列單片開關電源的P D,η,Po 關系曲線如下,見圖3、圖4.
圖3 寬范圍輸入且輸出為5 V 時PD ,η, Po 關系曲線。
圖4 寬范圍輸入且輸出為12 V 時PD,η, Po 關系曲線。
注意,這里假定交流輸入電壓最小值umin= 85 V,最高輸入電壓umax = 265 V.途中的橫坐標代表輸出功率,而15 條虛線均為芯片功耗的等值線。
首先確定適用的曲線圖,例如,當u= 85~ 265 V,Uo= + 5 V 時,應該選擇圖3; 當u= 220 V( 即230 V-230 V× 4.3% ),Uo= + 12 V 時,就應該選擇圖4; 然后在橫坐標上找出欲設計的功率輸出點P o ; 從輸出功率點垂直向上移動,知道選中合適芯片所指的那條曲線。如果不適用,可以繼續(xù)向上查找另一條實線; 然后從等值線( 虛線) 上讀出芯片的功耗PD,進而還可以求出芯片的結溫( Tj ) 以確定散熱片的大小。
例如,設計輸出5 V, 30 W 的通用開關電源時,就要選擇圖3.因為通用開關電源輸入交流電壓范圍85~ 265 V.首先從橫坐標上找到Po = 30 W 的輸出功率點,然后垂直上移,與T OP224 的實線相交于一點,由縱坐標上查出該點的η= 71.2%,最后從經(jīng)過這點的那條等值線上,查得PD = 2.5 W.這表明,選擇TOP224 就能輸出30 W 功率,并且預期的電源效率為71.2%,芯片功耗為2.5 W.如果覺得指標效率偏低,還可以繼續(xù)往上查TOP225 的實線。同理,選擇TOP225 也能輸出30 W 的功率,而預期的電源效率可以提高到75%,芯片功耗可以降低1.7 W.然后根據(jù)所得到的PD 值,還可以進而完成散熱片設計。[!--empirenews.page--]
3.2 等效輸出功率的修正
PD ,η, Po 關系曲線均對交流輸入電壓的最小值進行了限制,umin = 85 V.如果交流輸入電壓最小值不符合上述的要求,就會直接影響芯片的正確選擇。此時必須從實際的交流輸入電壓u? min最小值對應的功率P'o 折算成umin為規(guī)定值時的等效功率Po,才能使用上面的圖。功率修正的方法如下: 選擇使用的特性曲線,然后根據(jù)已知的u'min值查出折算系數(shù)K;將P 'o折算成umin為規(guī)定值時的等效功率Po,表達公式P o=P'o / K;然后從圖3、圖4 中選用適當?shù)年P系曲線。
圖5 寬范圍輸入時K 與u'min 的關系。
例如設計12 V, 35 W 的通用開關電源,已知umin= 90% × 115 V = 103.5 V.從圖5中查出K =1.15.將P 'o = 3.5 W, K = 1.15帶入P o= P 'o / K 中,計算出Po= 30.4 W; 再根據(jù)Po 的值,從圖4 中查出選擇的最佳型號是T OP224 芯片,此時η = 81.6%,PD= 2 W.如果選擇了T OP223, 則η 降到73.5%,PD 增加到5 W, 顯然不合適。如果選擇T OP225 型,就會造成資源浪費,因為它比TOP224 的價格要高一些,而且適合輸出40~ 60 W 的更大的功率。
4 主要元件參數(shù)計算
4.1 變壓器變比的設計
開關變壓器的變比與開關變換電路的具體形式有關,正激、半橋變換電路中開關變壓器的變比公式為:
式中,Uin,Uout分別為開關變壓器的輸入和輸出電壓;Nin,Nout 分別為開關變壓器初級和次級線圈的匝數(shù)。
當輸入電壓最低時,實際設計時應該按最低輸入電壓代入計算。
推挽電路的輸出電壓與輸入電壓之間的關系公式為:
Uout= 2DUin/n
因此得到關系式:n= 2D Uin / Uout= N 1 / N 2.
輸入電壓最低時,占空比D 值最大,這時候仍然能保持設計要求的輸出電壓,所以上式的D 應取最大值,Uin取最小值。
4.2 輸入濾波電容的選擇
輸入濾波電容器C 的容量與電源效率,輸出功率密切相關,對于寬范圍輸入的開關電源,C 的容量取μF 為單位時,可按比例系數(shù)3μF/ W 來選取。例如當Po= 30 W 時,C= ( 3μF/W)×30 W= 90μF, 以此類推。在固定輸入時,比例系數(shù)變成1μF/W, 上例中的C 就變成30μF.在設計開關電源時還要注意C 的容量誤差要盡量小,以免影響開關電源的性能。當C 的容量過小時,會降低TopswitchⅡ的可用功率。如果把30μF 改成20μF, 則輸出功率會降低15 %; 當C< 20μF 時,會造成可用功率的明顯下降。
另外,C 容量的大小還決定直流高壓Ui 的數(shù)值,圖3、圖4 實際上是在Ui= 105 V 的情況下繪制的,這個充分體現(xiàn)了C 對Ui 的影響。
4.3 開關管保護電路
在開關芯片的漏極D 側可以利用VDZ 和VD 兩個二極管對高頻變壓器的漏感產(chǎn)生的尖峰電壓進行箝位,可保護μ的D-S 極間不被擊穿。例如VDZ 可以選用瞬態(tài)電壓抑制器P6K200, 其反向擊穿電壓為200 V.VD 采用反向耐壓為600 V 的UF4005 型超快恢復二極管,亦稱阻塞二極管。
5 應用電路及其仿真
圖6給出了由TOPSwitch 構成的反激式電源的原理圖。其工作過程如下: 輸入交流電經(jīng)整流橋BR1 整流后再經(jīng)電容C1 濾波,變?yōu)槊}動的直流電。
反激式變壓器與TOPSwitch 將存儲于電容C1 的能量傳遞給負載。當TOPswitch 開關管導通時,電容C1兩端的電壓加到反激變壓器的原邊,流過原邊繞組的電流線性增加( 如若在MOSFET 開關管導通的瞬間變壓器副邊電流不為零,則由于副邊感應電勢反向,二極管D2 截止,副邊電流變?yōu)榱?,然而磁芯?nèi)的能量不能突變,故原邊電流躍變?yōu)楦边呺娏鞯?/ K,K 為變壓器變比),變壓器儲存能量; 當MOSFET 開關管關斷時,電感原邊電流由于沒有回路( 此時,穩(wěn)壓管VR1的擊穿電壓因高于原變壓器的感應電勢而截止) 而突變?yōu)榱悖儔浩魍ㄟ^副邊續(xù)流,副邊電流為TOPswitch 開關管關斷時原邊電流的K 倍,副邊繞組通過二極管D2 對電容C2 充電,此后,流過變壓器副邊的電流線性下降。二極管D1 與穩(wěn)壓管VR1 并接于變壓器的原邊以吸收由于變壓器原邊的漏感而產(chǎn)生的高壓毛刺。電阻R1、穩(wěn)壓管V R2、光耦U2 與電容C5 構成了電壓反饋電路以保證輸出電壓穩(wěn)定。電阻R2 與VR2 構成一假負載,以保證當電源空載或輕載時輸出電壓穩(wěn)定。電感L1 與電容C3 構成LC 濾波器以防止輸出電壓脈動過大。二極管D3 與電容C4 構成一整流電路以提供光耦U2 光電三極管的偏置電壓。電感L2 、電容C6 和C7 用于降低系統(tǒng)的電磁干擾( EMI) .
圖6 反激式電源的應用原理圖。
圖7分別給出了輸入電壓220 V ( 交流),輸出功率為40 W; 輸入電壓85 V ( 交流),輸出功率為24 W和輸入電壓85 V( 交流),輸出功率為40 W 時的輸出電壓波形。
圖7 不同電壓輸入條件下的電壓仿真輸出波形
6 結語
最后通過仿真試驗,對電源的設計過程進行了認證,結果表明,基于topswitch 芯片設計的開關電源,輸出波形較為穩(wěn)定,而且電磁兼容性好,抗干擾能力強,適合小功率開關電源的設計制造。直流穩(wěn)壓電源是現(xiàn)代電力電子系統(tǒng)中的重要組成部分,好的直流電源系統(tǒng)是高質(zhì)量現(xiàn)代電子系統(tǒng)的重要保證。