當(dāng)前位置:首頁(yè) > 電源 > 電源
[導(dǎo)讀]摘 要: 應(yīng)用于手機(jī)等通信電子產(chǎn)品電源系統(tǒng)的電流模式控制DC /DC轉(zhuǎn)換器芯片, 要求具有高性能電流檢測(cè)電路。設(shè)計(jì)了一個(gè)高精度的電流檢測(cè)電路, 基于華潤(rùn)上華CSMC 0. 5 um B

摘 要: 應(yīng)用于手機(jī)等通信電子產(chǎn)品電源系統(tǒng)的電流模式控制DC /DC轉(zhuǎn)換器芯片, 要求具有高性能電流檢測(cè)電路。設(shè)計(jì)了一個(gè)高精度的電流檢測(cè)電路, 基于華潤(rùn)上華CSMC 0. 5 um B iCMOS工藝庫(kù), 利用Cadence Spectre軟件進(jìn)行電路仿真, 經(jīng)仿真得知所設(shè)計(jì)的電路電流取樣精度達(dá)到1 000:1, 具有很高的采樣精度。該電流檢測(cè)電路性能良好, 已經(jīng)成功應(yīng)用于一款電流模式控制DC /DC轉(zhuǎn)換器芯片的設(shè)計(jì)之中。

電流檢測(cè)電路是電流模式控制所必需的, 通過(guò)檢測(cè)功率開關(guān)管上的電流, 然后輸出一個(gè)電流感應(yīng)信號(hào)與斜坡補(bǔ)償信號(hào)進(jìn)行疊加并轉(zhuǎn)換成一個(gè)電壓信號(hào), 再與誤差放大器的輸出進(jìn)行比較, 從而實(shí)現(xiàn)電流模式開關(guān)轉(zhuǎn)換器電流內(nèi)環(huán)的控制。其實(shí)現(xiàn)方法有很多種, 常見的有兩種, 一種是與功率管串聯(lián)一個(gè)電阻Rsen,另一種是與功率管并聯(lián)一個(gè)并聯(lián)檢測(cè)管復(fù)制比例電流, 并聯(lián)檢測(cè)管復(fù)制比例電流的檢測(cè)方法, 又有兩種主要的實(shí)現(xiàn)結(jié)構(gòu), 一種是采用運(yùn)放的結(jié)構(gòu), 另一種是利用反饋的方式。如果采用運(yùn)放, 顯然會(huì)增加電路的復(fù)雜性, 而且也會(huì)增加功耗。本文根據(jù)具有反饋控制電流源的原理來(lái)設(shè)計(jì)電流檢測(cè)電路中的反饋網(wǎng)絡(luò)。

1 反饋控制電流源的原理

電路原理圖及電流源動(dòng)態(tài)特性曲線如圖1( a)、( b)所示。根據(jù)電流源的特性曲線, 偏置電路中各相關(guān)元件的電流特性只有線性與非線性電流源相結(jié)合才可能有唯一的交點(diǎn)(原點(diǎn)除外), 這樣才能保證偏置電路有唯一穩(wěn)定的工作點(diǎn)。

 

 

圖1 具有反饋控制的電流源的原理圖

設(shè)電阻上的壓降為VR, M3 管的過(guò)驅(qū)動(dòng)電壓為△, 由M3、M4 電流相等的條件, 得到:

 

 

由此解出:

 

 

其中, VR = VGS3 - V GS4, 因此VGS的壓差決定了電阻上所形成的微電流, 即輸出電流I0 滿足的非線性關(guān)系為:

 

 

由此解出的輸出電流已與電源電壓無(wú)關(guān)。

2 電流檢測(cè)電路的具體電路設(shè)計(jì)實(shí)現(xiàn)

根據(jù)前面的分析, 可以看出, R 固定時(shí), 當(dāng)圖1所示的電路可以提供唯一的偏置偏流。但是在電流檢測(cè)電路中, 由于電感電流一直在變, 很顯然, 固定的電阻不再適用, 將圖1 的改進(jìn)電路運(yùn)用到電流檢測(cè)電路中, 如圖2所示, 圖中電阻用工作在線性區(qū)的MOS管MR 代替。

 

 

圖2 改進(jìn)型具有反饋控制電流源的電流檢測(cè)電路

工作在線性區(qū)的MOS 管, 其導(dǎo)通電阻rON可由下式得出:

 

 

可以看出, rON與V GS - VTH成反比, 因此電阻值會(huì)隨著VGS的變化而變化, 這樣不同的電阻值形成的非線性電流源與電流鏡結(jié)合, 就會(huì)有不同的穩(wěn)定工作點(diǎn)。因此, 在整個(gè)工作中, 對(duì)于一直變化的電感電流, 偏置電路是通過(guò)改變電阻值而達(dá)到不同的動(dòng)態(tài)穩(wěn)定狀態(tài)。

為了達(dá)到電路檢測(cè)的精確度, 本文用帶反饋控制、電阻值可變的電流源來(lái)代替復(fù)雜的運(yùn)放。

圖2所示電流檢測(cè)電路中, MP、MN 為功率管,M1 與M4、M2 與M5 的W/L相同, VP 為MP 的控制信號(hào), MPS用作開關(guān), 其W/L比較大, 具有低導(dǎo)通電阻。在電流模DC /DC 轉(zhuǎn)換器中, 反饋控制環(huán)路只需檢測(cè)MP 功率管導(dǎo)通時(shí)的電流, 因此, 為降低功耗, 可控制電流檢測(cè)電路只在MP 功率管導(dǎo)通時(shí)工作, 即只檢測(cè)電感充電階段的電流, 而在MP 功率管截止時(shí), 電流檢測(cè)電路不工作, 進(jìn)而有效地減小了功率損耗。

當(dāng)VP 為低電平時(shí), MP 導(dǎo)通, MPS作開關(guān)也導(dǎo)通,并且可以看作近似短路, 進(jìn)而流過(guò)MPS的電流也可以忽略, 因此MP、M1 的VDS近似相同, 流過(guò)MP 的電流被鏡像復(fù)制至M1。MP 與M1 的W/L成比例, 且比例系數(shù)較大, 因此檢測(cè)到的電流與MP 中的電流成比例, 同時(shí)遠(yuǎn)小于MP 中的電流。

下面分析VB 與VA 的關(guān)系。假設(shè)在某個(gè)時(shí)刻,VB 的電位高于VA, 則VDS4 < VDS1, M4 中的電流I4 小于M1 中的電流I1, 而VDS5 > VDS2, 要求I5 > I2, 這使得在同一支路中I4 I5, 顯然不太可能, 所以VB 會(huì)與VA 相同, 且保持相同的動(dòng)態(tài)變化。因此, M1 中的電流被再次鏡像至M4, 而且, 由于反饋控制電流源的作用, VA 處的任何微小變化都會(huì)強(qiáng)迫VB 也有相同的變化, 保證了電流檢測(cè)的精度。[!--empirenews.page--]

根據(jù)系統(tǒng)設(shè)計(jì)要求, 電流檢測(cè)的比例應(yīng)該為K = 1 000:1, 電路圖中給出了各級(jí)電流復(fù)制的比例,由于電流檢測(cè)電路采用帶反饋控制、電阻值可變的電流源結(jié)構(gòu), 可以得到VA 等于VB, 又由于設(shè)置M1,M4, 和M7 的寬長(zhǎng)比相等, 根據(jù)MOS 電流公式可以得到:

 

 

檢測(cè)精度和速度是電流檢測(cè)電路兩個(gè)重要的指標(biāo)。由于每個(gè)檢測(cè)周期的開始階段, 電流檢測(cè)電路處于啟動(dòng)狀態(tài), 所以Is 都有一段啟動(dòng)時(shí)間。這個(gè)時(shí)間主要由電路中M9、M10管的寄生電容決定, 當(dāng)兩管的寬度和長(zhǎng)度比較小時(shí), 啟動(dòng)時(shí)間很短, 相反, 啟動(dòng)時(shí)間會(huì)變長(zhǎng)。為了保證電流檢測(cè)的精度, M9、M10兩管的L 不能太小, 現(xiàn)取1 um。

3 仿真結(jié)果

通過(guò)仔細(xì)調(diào)整MP 管和M1 管的參數(shù), 設(shè)置為MP 管的寬長(zhǎng)比為5 000 um /1 um, M1 管的寬長(zhǎng)比為5 um /1um。其他管子的參數(shù)參見電路圖上的比例復(fù)制標(biāo)注。通過(guò)在在Cadence軟件中的spe tre仿真設(shè)計(jì)工具下, 采用CSMC 0. 5 m CMOS工藝在25℃進(jìn)行仿真驗(yàn)證。

下圖3給出電流檢測(cè)電路的仿真結(jié)果。

 

 

圖3 電流檢測(cè)電路的仿真波形

從輸出波形的測(cè)量可知, 當(dāng)電感電流IL 最大值如A 點(diǎn)測(cè)得的479. 55 A 時(shí), 檢測(cè)電流Is 最大值如B點(diǎn)測(cè)得的486. 81 A, 基本上滿足了:

 

 

故所設(shè)計(jì)的電流檢測(cè)電路能很好滿足設(shè)計(jì)要求。

4 結(jié)論

本文設(shè)計(jì)了一種適用電流模式的DC /DC 轉(zhuǎn)換器芯片的電流檢測(cè)電路, 通過(guò)利用有反饋控制電流源的原理來(lái)設(shè)計(jì)電流檢測(cè)電路中的反饋網(wǎng)絡(luò)。通過(guò)仿真驗(yàn)證可知所設(shè)計(jì)的電路性能良好, 采樣精度達(dá)到1 000:1, 完全滿足系統(tǒng)設(shè)計(jì)要求。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉