當前位置:首頁 > 電源 > 電源
[導讀] 電源反饋光耦CTR過大,過小?到底有何影響? 通知:張飛無人機配件、正激、視頻教程已在官方商城上架(點擊藍字查看詳情)! 1.摘要 近來, LLC拓撲以其高效,高功率密

 電源反饋光耦CTR過大,過???到底有何影響?

通知:張飛無人機配件、正激、視頻教程已在官方商城上架(點擊藍字查看詳情)!

1.摘要

近來, LLC拓撲以其高效,高功率密度受到廣大電源設計工程師的青睞,但是這種軟開關拓撲對MOSFET的要求卻超過了以往任何一種硬開關拓撲。特別是在電源啟機,動態(tài)負載,過載,短路等情況下。CoolMOS 以其快恢復體二極管,低Qg 和Coss能夠完全滿足這些需求并大大提升電源系統(tǒng)的可靠性。

長期以來, 提升電源系統(tǒng)功率密度,效率以及系統(tǒng)的可靠性一直是研發(fā)人員面臨的重大課題。 提升電源的開關頻率是其中的方法之一, 但是頻率的提升會影響到功率器件的開關損耗,使得提升頻率對硬開關拓撲來說效果并不十分明顯,硬開關拓撲已經達到了它的設計瓶頸。而此時,軟開關拓撲,如LLC拓撲以其獨具的特點受到廣大設計工程師的追捧。但是… 這種拓撲卻對功率器件提出了新的要求。

 2. LLC 電路的特點

LLC 拓撲的以下特點使其廣泛的應用于各種開關電源之中:

1. LLC 轉換器可以在寬負載范圍內實現零電壓開關。

2. 能夠在輸入電壓和負載大范圍變化的情況下調節(jié)輸出,同時開關頻率變化相對很小。

3. 采用頻率控制,上下管的占空比都為50%.

4. 減小次級同步整流MOSFET的電壓應力,可以采用更低的電壓MOSFET從而減少成本。

5. 無需輸出電感,可以進一步降低系統(tǒng)成本。

6. 采用更低電壓的同步整流MOSFET, 可以進一步提升效率。

3. LLC 電路的基本結構以及工作原理

圖1和圖2分別給出了LLC諧振變換器的典型線路和工作波形。如圖1所示LLC轉換器包括兩個功率MOSFET(Q1和Q2),其占空比都為0.5;諧振電容Cr,副邊匝數相等的中心抽頭變壓器Tr,等效電感Lr,勵磁電感Lm,全波整流二極管D1和D2以及輸出電容Co。

圖1 LLC諧振變換器的典型線路

圖2 LLC諧振變換器的工作波形

而LLC有兩個諧振頻率,Cr, Lr 決定諧振頻率fr1; 而Lm, Lr, Cr決定諧振頻率fr2。

系統(tǒng)的負載變化時會造成系統(tǒng)工作頻率的變化,當負載增加時, MOSFET開關頻率減小, 當負載減小時,開關頻率增大。

3.1 LLC諧振變換器的工作時序

LLC變換器的穩(wěn)態(tài)工作原理如下。

1)〔t1,t2〕

Q1關斷,Q2開通,電感Lr和Cr進行諧振,次級D1關斷,D2開通,二極管D1約為兩倍輸出電壓,此時能量從Cr, Lr轉換至次級。直到Q2關斷。

2)〔t2,t3〕

Q1和Q2同時關斷,此時處于死區(qū)時間, 此時電感Lr, Lm電流給Q2的輸出電容充電,給Q1的輸出電容放電直到Q2輸出電容的電壓等于Vin.

次級D1和D2關斷 Vd1=Vd2=0, 當Q1開通時該相位結束。

3)〔t3,t4〕

Q1導通,Q2關斷。D1導通, D2關斷, 此時Vd2=2Vout

Cr和Lr諧振在fr1, 此時Ls的電流通過Q1返回到Vin,直到Lr的電流為零次相位結束。

4)〔t4,t5〕

Q1導通, Q2關斷, D1導通, D2關斷,Vd2=2Vout

Cr和Lr諧振在fr1, Lr的電流反向通過Q1流回功率地。 能量從輸入轉換到次級,直到Q1關斷該相位結束

5)〔t5,t6)

Q1,Q2同時關斷, D1,D2關斷, 原邊電流I(Lr+Lm)給Q1的Coss充電, 給Coss2放電, 直到Q2的Coss電壓為零。 此時Q2二極管開始導通。 Q2開通時相位結束。

6)〔t6,t7〕

Q1關斷,Q2導通,D1關斷, D2 開通,Cr和Ls諧振在頻率fr1, Lr 電流經Q2回到地。 當Lr電流為零時相位結束。

3.2 LLC諧振轉換器異常狀態(tài)分析

以上描述都是LLC工作在諧振模式, 接下來我們分析LLC轉換器在啟機, 短路, 動態(tài)負載下的工作情況。

3.21 啟機狀態(tài)分析

通過LLC 仿真我們得到如圖3所示的波形,在啟機第一個開關周期,上下管會同時出現一個短暫的峰值電流Ids1 和Ids2. 由于MOSFET Q1開通時會給下管Q2的輸出電容Coss充電,當Vds為高電平時充電結束。而峰值電流Ids1和Ids2也正是由于Vin通過MOSFET Q1 給Q2 結電容Coss的充電而產生。

圖3 LLC 仿真波形

我們將焦點放在第二個開關周期時如圖4,我們發(fā)現此時也會出現跟第一個開關周期類似的尖峰電流,而且峰值會更高,同時MOSFET Q2 Vds也出現一個很高的dv/dt峰值電壓。那么這個峰值電流的是否仍然是Coss引起的呢? 我們來做進一步的研究。

圖4 第二個開關周期波形圖

對MOSFET結構有一定了解的工程師都知道,MOSFET不同于IGBT,在MOSFET內部其實寄生有一個體二極管,跟普通二極管一樣在截止過程中都需要中和載流子才能反向恢復, 而只有二極管兩端加上反向電壓才能夠使這個反向恢復快速完成, 而反向恢復所需的能量跟二極管的電荷量Qrr相關, 而體二極管的反向恢復同樣需要在體二極管兩端加上一個反向電壓。在啟機時加在二極管兩端的電壓Vd=Id2 x Ron. 而Id2在啟機時幾乎為零,而二極管在Vd較低時需要很長的時間來進行反向恢復。如果死區(qū)時間設置不夠,如圖5所示高的dv/dt會直接觸發(fā)MOSFET內的BJT從而擊穿MOSFET.

圖5

通過實際的測試,我們可以重復到類似的波形,第二個開關周期產生遠比第一個開關周期高的峰值電流,同時當MOSFET在啟機的時dv/dt高118.4V/ns. 而Vds電壓更是超出了600V的最大值。MOSFET在啟機時存在風險。

圖6

3.22 異常狀態(tài)分析

下面我們繼續(xù)分析在負載劇烈變化時,對LLC拓撲來說存在那些潛在的風險。

在負載劇烈變化時,如短路,動態(tài)負載等狀態(tài)時,LLC電路的關鍵器件MOSFET同樣也面臨著挑戰(zhàn)。

通常負載變化時LLC 都會經歷以下3個狀態(tài)。我們稱之為硬關斷, 而右圖中我們可以比較在這3個時序當中,傳統(tǒng)MOSFET和CoolMOS內部載流子變化的不同, 以及對MOSFET帶來的風險。

時序1, Q2零電壓開通,反向電流經過MOSFET和體二極管, 此時次級二極管D2開通,D1關段。

-傳統(tǒng)MOSFET此時電子電流經溝道區(qū),從而減少空穴數量

-CoolMOS此時同傳統(tǒng)MOSFET一樣電子電流經溝道,穴減少,不同的是此時CoolMOS 的P井結構開始建立。

時序2, Q1和Q2同時關斷,反向電流經過MOSFETQ2體二極管。

Q1和Q2關斷時對于傳統(tǒng)MOSFET和CoolMOS來說內部電子和空穴路徑和流向并沒有太大的區(qū)別。

時序3, Q1此時開始導通,由于負載的變化, 此時MOSFET Q2的體二極管需要很長的時間來反向恢復。當二極管反向恢復沒有完成時MOSFET Q2出現硬關斷, 此時Q1開通,加在Q2體二極管上的電壓會在二極管形成一個大電流從而觸發(fā)MOSFET內部的BJT造成雪崩。

-傳統(tǒng)MOSFET此時載流子抽出,此時電子聚集在PN節(jié)周圍, 空穴電流擁堵在PN節(jié)邊緣。

-CoolMOS的電子電流和空穴電流各行其道, 此時空穴電流在已建立好的P井結構中流動,并無電子擁堵現象。

綜上, 當LLC電路出現過載,短路,動態(tài)負載等條件下, 一旦二極管在死區(qū)時間不能及時反向恢復, 產生的巨大的復合電流會觸發(fā)MOSFET內部的BJT使MOSFET失效。

有的 CoolMOS采用Super Juction結構, 這種結構在MOSFET硬關斷的狀態(tài)下, 載流子會沿垂直構建的P井中復合, 基本上沒有側向電流, 大大減少觸發(fā)BJT的機會。

4. 如何更容易實現ZVS

通過以上的分析,可以看到增加MOSFET的死區(qū)時間,可以提供足夠的二極管反向恢復時間同時降低高dv/dt, di/dt 對LLC電路造成的風險。但是增加死區(qū)時間是唯一的選擇么?下面我們進一步分析如何夠降低風險提升系統(tǒng)效率。

圖7

對于LLC 電路來說死區(qū)時間的初始電流為

而LLC能夠實現ZVS必須滿足

而最小勵磁電感為

根據以上3個等式,我們可以通過以下三種方式讓LLC實現ZVS.

第一, 增加Ipk.

第二, 增加死區(qū)時間。

第三, 減小等效電容Ceq即Coss.

從以上幾種狀況,我們不難分析出。增加Ipk會增加電感尺寸以及成本,增加死區(qū)時間會降低正常工作時的電壓,而最好的選擇無疑是減小Coss,因為減小無須對電路做任何調整,只需要換上一個Coss相對較小MOSFET即可。

5. 結論

LLC 拓撲廣泛的應用于各種開關電源當中,而這種拓撲在提升效率的同時也對MOSFET提出了新的要求。不同于硬開關拓撲,軟開關LLC諧振拓撲,不僅僅對MOSFET的導通電阻(導通損耗),Qg(開關損耗)有要求,同時對于如何能夠有效的實現軟開關,如何降低失效率,提升系統(tǒng)可靠性,降低系統(tǒng)的成本有更高的要求。CoolMOS,具有快速的體二極管,低Coss,有的可高達650V的擊穿電壓,使LLC拓撲開關電源具有更高的效率和可靠性。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數據產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數據產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯合牽頭組建的NVI技術創(chuàng)新聯盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現場 NVI技術創(chuàng)新聯...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉