當(dāng)前位置:首頁(yè) > 電源 > 電源
[導(dǎo)讀] 功率電子設(shè)備的技術(shù)進(jìn)步與功率器件的性能提高、新器件的不斷出現(xiàn)有著密切的關(guān)系。50年來,隨著功率半導(dǎo)體器件的進(jìn)步,UPS設(shè)備經(jīng)歷了由多輸出工頻變壓器到單個(gè)輸出工頻變壓

功率電子設(shè)備的技術(shù)進(jìn)步與功率器件的性能提高、新器件的不斷出現(xiàn)有著密切的關(guān)系。50年來,隨著功率半導(dǎo)體器件的進(jìn)步,UPS設(shè)備經(jīng)歷了由多輸出工頻變壓器到單個(gè)輸出工頻變壓器的演變過程,而性能更好的大功率IGBT器件和更先進(jìn)的控制技術(shù)的出現(xiàn),為UPS設(shè)備從根本去掉輸出隔離變壓器創(chuàng)造了物質(zhì)條件,使其在高頻化、小型化、節(jié)能化和綠色環(huán)保化方面取得了長(zhǎng)足的進(jìn)展,這就是人們所說的“高頻機(jī)”。這種機(jī)型集中體現(xiàn)了UPS電路技術(shù)的進(jìn)步,代表著UPS技術(shù)的發(fā)展方向。與傳統(tǒng)的帶輸出變壓器的UPS相比,它在進(jìn)一步縮小體積、減輕重量、改善性能、提高效率、降低成本等方面,都取得了明顯的改善和進(jìn)步。

一、 UPS電路的演變史反映了UPS電路技術(shù)的發(fā)展歷程

最初的UPS輸出逆變器都是帶有輸出變壓器的。應(yīng)該說,采用輸出變壓器是UPS逆變器輸出電路形式所決定的,而變壓器的存在卻是弊大于利。逆變器電路技術(shù)演變過程的一個(gè)顯著的表現(xiàn)形式是:是否必須用變壓器,如何配置變壓器,是否可能去掉變壓器。

圖1是20世紀(jì)70年代生產(chǎn)的第一代三相UPS的典型電路結(jié)構(gòu)形式。

圖1所示的UPS包括一個(gè)由降壓式自耦變壓器繞組供電的二極管全波整流器和一個(gè)與整流器相并聯(lián)的、由自耦變壓器的輔助二次側(cè)繞組供電的可控硅電池充電器。當(dāng)電網(wǎng)停電時(shí)靜態(tài)開關(guān)可將電池組連接到直流母線上供電。

逆變器由4個(gè)三相逆變器以全波方式運(yùn)行(按照基波頻率進(jìn)行換向),每一個(gè)三相逆變器都與變壓器的一次側(cè)繞組相連接(三角形連接),再把這些二次側(cè)繞組開放式變壓器(Open Phase Transformers) 的二次側(cè)以一定方式進(jìn)行連接,以獲得合成的輸出電壓。這4個(gè)變壓器被分為兩組,每一組都包含一個(gè)星形和一個(gè)Z形(曲折星形)的二次側(cè)繞組,這兩個(gè)二次側(cè)繞組之間具有30°相位差。這一特殊的連接可消除n = 6k±1(k為奇數(shù))次的電壓諧波,這等效于12脈沖整流器中的兩個(gè)移相式繞組在變壓器一次側(cè)中可抵消5、7次諧波。對(duì)于在變壓器一次側(cè)繞組中每相可能出現(xiàn)的3次和3n次電流諧波,由一次側(cè)繞組的三角形接線方式來抵消。因此,輸出端首先需要濾除的諧波為第11次諧波。輸出電壓的調(diào)整是通過移動(dòng)兩組變壓器之間的相位(0 《 φ 《180°)來完成的。由于首先需要濾除的是第11次諧波,所以輸出濾波器的尺寸較小,這使得逆變器對(duì)負(fù)載變化的動(dòng)態(tài)響應(yīng)特性加快。

以可控硅(晶閘管)為基本功率器件的電路存在著換相安全和功率損耗的問題,為減少電路的能量損失和改善控制功能,下一代系統(tǒng)開始使用一種新的脈沖電路,每個(gè)晶閘管都有其相應(yīng)的滅弧電路。整個(gè)設(shè)備僅需兩個(gè)變壓器,如圖2所示。為消除 n = 6k±1(k為奇數(shù))次的諧波,只需要一組相位相差30°的逆變器,而這30°的相移是預(yù)先設(shè)置好的,并在每臺(tái)變壓器一次側(cè)以“脈沖寬度調(diào)節(jié)”的方式(PWM)來實(shí)現(xiàn)對(duì)電壓的調(diào)整。為達(dá)到預(yù)期的輸出電壓,可以將上述換向電路應(yīng)用于每周期6次固定換向的基本脈寬調(diào)制電路(PWM)。

變壓器的數(shù)量從4個(gè)減少到2個(gè),但為了能進(jìn)一步減少變壓器的數(shù)量,就不得不提高逆變電路的性能,以便通過優(yōu)化PWM就能達(dá)到目的,而無需再使用兩組變壓器的耦合方式。以前使用兩組移相30°的變壓器是為了減小低次諧波(5、7次),因?yàn)樗麄兊姆递^大,要濾除他們比較困難。只用一個(gè)變壓器的UPS如圖3所示。電路中,變壓器的二次側(cè)繞組為曲折星形連接,每個(gè)逆變器以基波的7倍頻率來斬波直流電壓。這種斬波方式稱為固定頻率斬波,在設(shè)計(jì)時(shí)以盡可能減小輸出電壓的失真度以及減小濾波器的尺寸為目標(biāo)。輸出電壓的調(diào)整是通過移動(dòng)兩組逆變器橋之間的相位進(jìn)行的。

自20世紀(jì)80年代起,UPS逆變器開始只含有一個(gè)變壓器。同時(shí),隨著功率半導(dǎo)體器件的革新,雙極型功率晶體管以及電子控制級(jí)的IGBT等功率半導(dǎo)體器件的出現(xiàn),逆變電路中的可控硅器件被取代(見圖4和圖5),但UPS帶輸出變壓器的這種情況仍在繼續(xù)且一直持續(xù)到二十一世紀(jì)伊始,其間雖然在1995年出現(xiàn)了無變壓器的逆變器結(jié)構(gòu),然而此類產(chǎn)品僅適用于功率小于等于30 kVA的UPS。造成這一情形的主要原因是功率半導(dǎo)體器件換向時(shí)的損耗較大,而較高的耐壓要求又使得人們很難在不用變壓器的條件下成功地制作出大容量的逆變器。

APC的解決方案配備了自動(dòng)檢測(cè)斷路器大小、PDU電路位置和分支電流監(jiān)控功能,為用戶帶來更多實(shí)用的好處。這些功能與英飛解決方案的容量和變化管理模塊兼容,更好地實(shí)現(xiàn)自動(dòng)分支電流設(shè)置、調(diào)整和平衡功能。

圖4的逆變器采用IGBT器件,變壓器二次側(cè)繞組采用星形連接。每個(gè)一次側(cè)繞組都連接到兩個(gè)逆變器支路的中點(diǎn),組成實(shí)際上是三個(gè)單相全控制的逆變器橋。因此,在二次側(cè)繞組上得到的電壓是獨(dú)立進(jìn)行調(diào)節(jié)的,這可有效地確保輸出電壓的良好平衡,而不管三相負(fù)載電流是否處于平衡狀態(tài)。使用橋式組件的連接方式可使每個(gè)支路的變換頻率相對(duì)于標(biāo)稱變換頻率減小1/2,這樣每個(gè)支路都只在正弦波的1/2個(gè)周期內(nèi)工作。

圖5只有一個(gè)逆變器(三相全橋),此變壓器的耦合方式采用一次側(cè)三角形 / 二次側(cè)曲折星形連接。這種連接方式可實(shí)現(xiàn)兩個(gè)額外的功能。首先,它可以實(shí)時(shí)(即刻、瞬間)地調(diào)節(jié)每相的輸出電壓,而各相輸出電壓都與逆變器的逆變支路相對(duì)應(yīng)。此外,變壓器二次側(cè)的Z形連接所吸收的負(fù)載3n次諧波電流傳送到變壓器的一次側(cè)繞組,使這些諧波電流只在一次側(cè)繞組內(nèi)流動(dòng),這樣,可降低IGBT的換向電流,從而減少了換向損耗。

以上所述就是逆變器中的變壓器是如何逐步發(fā)展演變的過程。

標(biāo)簽:

二、 UPS輸出隔離變壓器的功能

了解傳統(tǒng)UPS輸出隔離變壓器的功能是非常重要的,因?yàn)橹挥挟?dāng)用電路措施能夠完全實(shí)現(xiàn)它的功能時(shí),才有可能在新一代設(shè)備中替代并取消它。實(shí)際上對(duì)這個(gè)問題是存在一些誤解的,諸如:逆變器輸出隔離變壓器“有隔離的作用”、能夠“抗干擾”、能夠“緩沖負(fù)載的突變”,還能“提高UPS的可靠性”等等,甚至于認(rèn)為無變壓器的UPS就不能可靠的工作,好像這個(gè)變壓器是為了這些目的而專門設(shè)計(jì)的。持有這種看法的人要么是對(duì)UPS逆變器工作原理不太了解,要么是對(duì)隔離變壓器的功能和在逆變器電路中的作用不甚了解。應(yīng)該說這個(gè)變壓器是工頻機(jī)全橋逆變器不可分離的構(gòu)成部分,而且它的作用也很簡(jiǎn)單:升壓和產(chǎn)生三相四線輸出的零線。

1、輸出變壓器的功能之一是為單相負(fù)載提供所需要的零線

傳統(tǒng)雙轉(zhuǎn)換UPS輸出變壓器的一個(gè)重要功能是在UPS輸出端產(chǎn)生為單相負(fù)載供電時(shí)所需要的中性線(通常稱之為零線)。

帶輸出變壓器的UPS的DC/AC逆變器通常是由全橋電路組成,如圖6和圖7所示。輸出端必須加變壓器,否則就完不成輸出單相或三相四線交流電壓的功能。所以此變壓器應(yīng)視為產(chǎn)生輸出零線的變壓器。

圖6為單相UPS輸出DC/AC逆變器主電路圖,它是一個(gè)全橋逆變電路,每個(gè)橋臂有兩個(gè)串聯(lián)的IGBT(VT1——VT4),輸出交變電壓UAB由兩個(gè)橋臂的中點(diǎn)A和B引出。

當(dāng)VT1和VT4同時(shí)通導(dǎo)(VT2和VT3截止)時(shí),由直流電壓E形成的電流回路是電壓E的正端—VT1—負(fù)載A端—負(fù)載B端—VT4—電壓E的負(fù)端;而VT2和VT3同時(shí)導(dǎo)通(VT1、VT4截止)時(shí),由直流電壓E形成的電流回路是電壓E正端—VT2—負(fù)載B端—負(fù)載A端—VT3—電壓E的負(fù)端。如果VT1和VT4與VT2和VT3交替導(dǎo)通的周期是50Hz,則加在負(fù)載上的電壓UAB是幅值為直流電壓E的50Hz方波或者準(zhǔn)方波,如果VT1和VT4以及VT2和VT3都以高頻正弦波脈寬調(diào)制(SPWM)規(guī)律導(dǎo)通和截止,則負(fù)載端電壓UAB是幅值可調(diào)整的正弦波。

值得注意的是,通常單相負(fù)載的輸入電壓要求有一根零線,而且這根零線在系統(tǒng)中(供電系統(tǒng)輸入變壓器的輸出端)是要接大地的,顯然,如果把圖6單相電路中的A或者B任一點(diǎn)做輸出零線接地,都會(huì)使輸入電壓通過導(dǎo)通的半導(dǎo)體功率器件對(duì)零線短路而立即燒毀逆變器。

圖7為三相UPS輸出的全橋DC/AC逆變器電路框圖。為了滿足負(fù)載必須有零線的要求,于是就增加一個(gè)輸出隔離變壓器,變壓器的初級(jí)做三角型連接,由三相全橋的三個(gè)橋臂中點(diǎn)做三相線電壓輸入,變壓器次級(jí)星型連接,產(chǎn)生新的零線按三相四線制向負(fù)載供電。

這里不僅需要輸出隔離變壓器產(chǎn)生零線,為了UPS轉(zhuǎn)旁路時(shí)也能正常供電,輸出變壓器產(chǎn)生的零線還必須與系統(tǒng)輸入的零線連接在一起。

2、輸出變壓器的功能之二是對(duì)輸出電壓的匹配作用

傳統(tǒng)大中型UPS主回路結(jié)構(gòu)采用可控硅整流將輸入的交流電整流為直流電,電池直接掛在直流母線上,當(dāng)輸入市電正常時(shí),靠整流可控硅的調(diào)節(jié)對(duì)電池充電,同時(shí)為IGBT結(jié)構(gòu)的橋式逆變器供電。從系統(tǒng)結(jié)構(gòu)可以看出,從整流到逆變的過程中,每個(gè)環(huán)節(jié)都是降壓環(huán)節(jié):可控硅整流是為了提供恒定的直流電壓而采取的一種整流方式,由于可控硅整流要“斬掉”一部分輸入電壓,所以其輸出電壓恒定的代價(jià)是輸出電壓恒定在低于全波整流輸出電壓的某個(gè)數(shù)值上。而逆變環(huán)節(jié)同樣是一個(gè)降壓環(huán)節(jié),從可控整流輸入來的直流電在通過逆變器逆變出正弦交流電的過程中通常采用的是脈寬調(diào)制(PWM)方法,其結(jié)果同樣是輸出電壓等級(jí)的再次降低。正是由于上述的原因,在此種結(jié)構(gòu)的UPS逆變器中,輸出變壓器起著電壓匹配和提升的作用,將逆變器輸出的電壓升至到合理的輸出范圍。

在實(shí)際應(yīng)用中,輸出變壓器通常采用圖8的接法,變壓器初級(jí)是三角型,對(duì)于沒有升降壓作用的隔離變壓器,三個(gè)初級(jí)線圈的電壓都是380V,次級(jí)是星型,三個(gè)次級(jí)線圈的電壓都是220V,那么初次級(jí)線圈的匝比應(yīng)該是:N1: N2=1:0.577。

當(dāng)要求輸出相電壓為穩(wěn)定的220V時(shí),變壓器原邊的峰值電壓(即直流電壓E)應(yīng)該是:

220V ×1.414×1.732=538.8V

考慮到逆變器PWM工作方式,為逆變器供電的直流電壓要高于變壓器原邊的峰值電壓,最小極限值通常取變壓器原邊峰值電壓1.2倍左右,即:

538.8V×1.2=646.56V

但是,當(dāng)考慮輸入電壓下限變化10%時(shí),輸入三相線電壓全波整流的最高直流電壓的理論值是:

380V×1.414×0.9=483V

實(shí)際上考慮到AC/DC轉(zhuǎn)換過程的降壓因素,大中型UPS的電池(直接跨接在直流母線上)通常配置32-34節(jié),額定電壓為384V-408V,浮充電壓(即AC/DC變換后的直流母線電壓)為432V -459V,電池放電下線電壓為340V-362V。

UPS直流母線電壓的下限值(340V-362V)與輸出電壓要求的變壓器原邊的峰值電壓(646.56V)之間的差別就應(yīng)該由輸出變壓器采用升壓方法來解決,所以,輸出變壓器的升壓比應(yīng)該是 :646.56V/(340V-362V),即1.9~1.78。

也就是說,輸出變壓器的實(shí)際匝比應(yīng)該是:1:1.9或1:1.78。

以上數(shù)據(jù)是按一般情況推算的,實(shí)際情況與不同的電路結(jié)構(gòu)形式有直接的關(guān)系,輸出變壓器的參數(shù)和接法也不盡相同,但不管電路差別有多大,輸出變壓器總是通過原付邊匝比的變化起著匹配逆變器輸入電壓與UPS輸出電壓的作用。

3、輸出變壓器是隔離變壓器,但在系統(tǒng)中沒有隔離功能

在UPS供電系統(tǒng)中,UPS設(shè)備的一個(gè)至關(guān)重要的功能是當(dāng)輸出過載或者UPS逆變器故障時(shí),自動(dòng)轉(zhuǎn)靜態(tài)旁路供電,另外,在系統(tǒng)中還設(shè)置了維護(hù)旁路,當(dāng)UPS需要維護(hù)時(shí)可手動(dòng)轉(zhuǎn)維護(hù)旁路向負(fù)載供電。執(zhí)行這兩個(gè)操作時(shí),都是由旁路輸入三相四線電壓直接向負(fù)載供電,所以系統(tǒng)的零線與負(fù)載端的零線必須短接在一起。這就決定了帶輸出變壓器的UPS的變壓器次級(jí)新產(chǎn)生的零線必須連接到輸入電源系統(tǒng)的零線上,如圖9所示。也就是說,UPS機(jī)內(nèi)的變壓器沒有電源系統(tǒng)隔離的功能,如果系統(tǒng)存在零-地電壓差較大的問題,UPS機(jī)內(nèi)的逆變器輸出變壓器對(duì)此電壓差是無能為力的。

在實(shí)際應(yīng)用中,當(dāng)零-地電壓差過大而需要降低時(shí),就必須額外配置專門的隔離變壓器,如圖10和圖11所示。

隔離變壓器的配置方法有兩種:

第一種方法:在旁路輸入端配置與UPS同功率的隔離變壓器,這樣UPS內(nèi)置的輸出變壓器的輸出零線和旁路隔離變壓器輸出零線都可以接在系統(tǒng)地線上(重新組成接地系統(tǒng)),這就實(shí)現(xiàn)了UPS輸出與供電系統(tǒng)的真正隔離,并使這點(diǎn)的零-地電壓差等于零。用這種接法的優(yōu)點(diǎn)是,在UPS正常工作模式下,旁路隔離變壓器空載運(yùn)行,不影響UPS的輸出性能和系統(tǒng)效率。缺點(diǎn)是,當(dāng)UPS轉(zhuǎn)旁路時(shí),變壓器突然帶載工作,其輸出電壓瞬間會(huì)低于轉(zhuǎn)換前UPS檢測(cè)到的電壓(變壓器空載電壓),如果轉(zhuǎn)換前UPS檢測(cè)到的電壓已經(jīng)處于UPS同步運(yùn)行(限定的可以轉(zhuǎn)旁路運(yùn)行)的下限,那么轉(zhuǎn)換后因變壓器的壓降(電壓調(diào)整率)而使輸出電壓低于負(fù)載供電電壓的下限,負(fù)載可能會(huì)因此而間斷或宕機(jī)。

第二種方法:把變壓器配置在UPS的輸出端,此方法可使UPS供電系統(tǒng)與負(fù)載做到理想的、完全的電氣隔離,特別是當(dāng)UPS供電系統(tǒng)在物理位置上與負(fù)載距離較長(zhǎng)時(shí),可把變壓器放在接近負(fù)載端,例如一些大型數(shù)據(jù)中心,在負(fù)載列頭柜輸入端加裝隔離變壓器。此方法的缺點(diǎn)是變壓器的阻抗會(huì)影響到UPS對(duì)負(fù)載供電的穩(wěn)定精度、供電能力和動(dòng)態(tài)特性

。
4、關(guān)于隔離變壓器的抗干擾功能

由于變壓器的阻抗有一定的感性成分,因而說這個(gè)變壓器具有一定的抗干擾作用是可以理解的。但是逆變器輸出變壓器卻不是為抗干擾而設(shè)置的,它的抗干擾能力也是有限的。

常常會(huì)有人簡(jiǎn)單地認(rèn)為:當(dāng)系統(tǒng)中設(shè)置有隔離變壓器時(shí),其抗干擾功能就一定會(huì)很強(qiáng)。這種認(rèn)識(shí)并不完全正確。在供電系統(tǒng)中,產(chǎn)生干擾的原因和干擾現(xiàn)象是多種多樣的,其中包括諸如高壓脈沖、尖峰毛刺、電涌、暫態(tài)過電壓、射頻干擾(EFI)和電磁干擾(EMI)等等。但是,就其干擾形式和傳輸途徑而言,大體可分為兩類:一是共模干擾,二是差模干擾。共模干擾存在于電源任一相線和零線與大地之間,共模干擾有時(shí)也稱縱模干擾、不對(duì)稱干擾或接地干擾,是由于輻射或串?dāng)_耦合到電路中的,是載流體與大地之間的干擾。而差模干擾存在于電源相線與零線之間及相線與相線之間,差模干擾有時(shí)也稱常模干擾、橫模干擾或?qū)ΨQ干擾,是載流導(dǎo)體之間的干擾。

目前,人們通常采用的抑制干擾的措施主要有給被保護(hù)的設(shè)備并聯(lián)瞬變干擾抑制器和在電子設(shè)備的輸入端安裝電源濾波器兩種方式。采用變壓器提高抗干擾能力是有一定作用的,但這里講的變壓器應(yīng)是特殊的“超級(jí)隔離變壓器”,而非普通的線性變壓器。

并不是隔離變壓器就能抗干擾,普通變壓器的抗干擾能力是有限的。對(duì)于輸入電壓中存在的低頻干擾和電壓畸變,變壓器不可能也不允許“抗干擾”。否則通過變壓器傳輸?shù)碾妷翰ㄐ尉蜁?huì)失真。對(duì)由地線環(huán)路帶來的設(shè)備間的相互高頻干擾有一定的抑制作用,但因繞組間存在的分布電容,使它對(duì)共模干擾的抑制效果隨干擾頻率的升高而下降。

變壓器是靠磁耦合實(shí)現(xiàn)原邊和副邊的電壓變換的,因而它不具備抗差模干擾的功能。在1kHz~100MHz的干擾頻率范圍內(nèi),普通隔離變壓器對(duì)共模和差模干擾的衰減能力都微乎其微。對(duì)普通隔離變壓器的共模抑制能力的分析表明,要提高對(duì)共模干擾的抑制能力,關(guān)鍵是減小變壓器繞組的匝間耦合電容,為此在變壓器初、次級(jí)間加設(shè)屏蔽層,如圖12所示。

圖12中,C1為初級(jí)繞阻與屏蔽層之間的分布電容, C2為次級(jí)繞阻與屏蔽層之間的分布電容,Z1為屏蔽層接地阻抗,Z2為負(fù)載的對(duì)地阻抗,E1為初級(jí)干擾(共模型)電壓,E2為E1通過偶合傳導(dǎo)到次級(jí)的干擾(共模型)電壓。如果C1和C2的阻抗遠(yuǎn)大于屏蔽層接地阻抗,則偶合傳導(dǎo)到次級(jí)的干擾電壓E2就會(huì)遠(yuǎn)小于E1。

要使隔離變壓器同時(shí)具有較好抗差模干擾與共模干擾的功能,必須把它制作成超級(jí)隔離屏蔽變壓器。超級(jí)屏蔽隔離變壓器是性能較完善的多重屏蔽的隔離變壓器,對(duì)差模和共模都有較強(qiáng)的抑制功能,如圖13所示。

超級(jí)屏蔽隔離變壓器有3屏蔽層,靠近初級(jí)繞阻的屏蔽層連接在初級(jí)中性線上,可以濾掉初級(jí)出現(xiàn)的高頻差模干擾。而對(duì)50Hz的工頻電壓則不產(chǎn)生任何影響,靠近次級(jí)繞阻的屏蔽層連接在次級(jí)中性線上,可以濾掉次級(jí)出現(xiàn)的高頻差模干擾。中間屏蔽層則與變壓器外殼連在一起,再接大地,主要用來濾掉共模干擾。



三、 無UPS輸出隔離變壓器的功能

無輸出變壓器UPS視設(shè)計(jì)功率的大小,所用的具體電路形式也不盡相同,這里僅就大功率無輸出變壓器UPS的主電路結(jié)構(gòu)形式(見圖14)來討論它是如何完成三相四線輸出和系統(tǒng)升壓功能的,因?yàn)橐笕嗨木€輸出和系統(tǒng)升壓是傳統(tǒng)UPS必須帶輸出變壓器的兩個(gè)根本理由。當(dāng)新的電路拓樸結(jié)構(gòu)本身具備這兩個(gè)功能時(shí),輸出變壓器也就自然沒有存在的必要了。

圖14主要表示了與是否需要變壓器這一論題有關(guān)的電路框圖,輸入部分是IGBT-PFC整流電路,后面部分是三相半橋逆變電路,中間是電池配置示意圖。這里電池組用了兩組400V電池組,串聯(lián)后直接跨接在直流母線上。當(dāng)然也可用一組400V電池組,那么就需要在直流母線和電池組之間配置一個(gè)獨(dú)立的可雙向工作的DC/DC變換器,市電正常時(shí),由800V降壓給電池組充電,當(dāng)市電停電時(shí),反向升壓給半橋逆變器提供800V工作電壓。

下面主要敘述IGBT-PFC整流電路和三相半橋逆變電路的工作狀態(tài)。

1、無輸出變壓器UPS是如何向負(fù)載提供三相四線制電壓的

圖14中,輸出半橋逆變電路由三組IGBT橋臂組成,每組與公用電容(電池)電路組成單相半橋逆變器。三個(gè)半橋電路可獨(dú)立輸出功率,由他們形成的三個(gè)50Hz單相正弦波電壓彼此相差120º,所以只要看一下一個(gè)半橋電路的工作過程,就可了解三相電路的工作狀態(tài)。

如圖15所示,假定橋臂的上面的IGBT用VT1和VD1表示,下面的IGBT用VT2和VD2表示,與電池并連的電容分別是C1和C2,續(xù)流電感為L(zhǎng)。

圖15所示為主逆變器逆變狀態(tài)等效電路及工作過程。我們分析其工作過程時(shí),先按輸出電壓正半周和負(fù)半周把它分解為兩個(gè)降壓型開關(guān)電路(Buck)。在輸出電壓的正半周時(shí),降壓開關(guān)電路由開關(guān)管VT1、續(xù)流二極管VD2和電感L組成。VT1導(dǎo)通時(shí)電容C1上的正電壓(400V)通過電感L向負(fù)載輸出功率,電感L中的電流線性上升;當(dāng)VT1由導(dǎo)通轉(zhuǎn)為截止后,由于電感L的續(xù)流作用,感應(yīng)電壓使VD2導(dǎo)通,續(xù)流電流流經(jīng)電容C2,其電流方向?qū)嶋H上是給電容C2充電。在輸出電壓的負(fù)半周時(shí),降壓開關(guān)電路由開關(guān)管VT2、續(xù)流二極管VD1和電感L組成。VT2導(dǎo)通時(shí),電容C2上的負(fù)電壓(-400V)通過電感L形成輸出電壓的負(fù)半周,電感L中電流線性上升,VT2由導(dǎo)通轉(zhuǎn)為截止后,由于電感的續(xù)流作用使二極管VD1導(dǎo)通,其電流方向?qū)嶋H上是給電容C1充電。在電路中,輸出電容C是容量不大的交流濾波電容器,設(shè)置它的主要目的是與電感L一起濾除逆變器高頻(15KH左右)開關(guān)脈動(dòng)電壓和干擾成分,當(dāng)開關(guān)管的控制波形按正弦規(guī)律變化(SPWM)時(shí),輸出電壓肯定是平滑的正弦波。

由圖15所示的工作過程和輸出電壓波形可知,三個(gè)半橋電路可分別輸出三個(gè)穩(wěn)定的正弦波電壓,控制電路使三個(gè)穩(wěn)定的正弦波電壓相位差為120º,于是就形成了三相四線制輸出,公共零線則是由直流母線的電容中點(diǎn)引出,而無需再配置輸出隔離變壓器。

2、PFC技術(shù)可同時(shí)完成輸入功率因數(shù)校正和升壓功能

采用高頻整流技術(shù)(IGBT-PFC)同時(shí)完成對(duì)輸入功率因數(shù)校正和提升電壓的功能,是無輸出變壓器UPS電路技術(shù)的另一重要的標(biāo)志性的特點(diǎn)。PFC技術(shù)已經(jīng)很成熟,根據(jù)不同的應(yīng)用場(chǎng)合和不同的性能要求,其電路拓?fù)湫问揭膊槐M相同,但其基本原理是是相同的,具有功率校正功能的電路有降壓式、升/降壓式、反擊式、升壓式(Boost)四種形式,在UPS設(shè)備中,為了同時(shí)完成對(duì)輸入功率因數(shù)校正和提升電壓的功能,自然就采用了升壓式(Boost)電路。

圖16是單相升壓式(Boost)電路原理。圖中的C1為高頻小容量電容器,用以消除開關(guān)管在高頻開關(guān)時(shí)產(chǎn)生的傳向電網(wǎng)的干擾。C2是大容量直流電解電容器。與一般AC/DC整流變換所不同的是,在橋式整流與大容量直流電容之間加入了PFC電路環(huán)節(jié),其目的是使輸入電流跟隨輸入電壓按正弦規(guī)律同相位變化。PFC環(huán)節(jié)由電感L、開關(guān)管VT和二極管VD以及相應(yīng)的控制電路組成,控制電路接收輸入電壓波形頻率和相位、輸入電流波形和數(shù)值、輸出直流電壓幅值3種反饋信號(hào),并以PWM方式控制開關(guān)管的導(dǎo)通和截止,其工作過程如下:功率開關(guān)管VT導(dǎo)通時(shí),二極管VD因反向偏置而截止,輸入電壓通過開關(guān)管VT向電感L充磁,電感電流(即此時(shí)的輸入電流)IL的變化規(guī)律直接取決于電感L值和此時(shí)的輸入電壓瞬時(shí)值,其增加值則同時(shí)與L值、此時(shí)刻輸入電壓的瞬時(shí)值及開關(guān)管導(dǎo)通時(shí)間有關(guān)。開關(guān)管VT截止時(shí),由于電感L的續(xù)流作用而感應(yīng)一個(gè)電壓疊加在輸入電壓上,使二極管VD正向?qū)?,電感L將貯存的磁能轉(zhuǎn)化為電能向電容C2充電并向負(fù)載輸出,輸入電流IL下降,IL下降速率與電感L值、此時(shí)刻輸入電壓瞬時(shí)值,以及負(fù)載(即直流電壓U2的輸出負(fù)載)大小有關(guān),其減小值除取決于以上因素外,還與開關(guān)管VT的截止時(shí)間有關(guān)。顯然,當(dāng)輸入電壓U1以正弦規(guī)律變化時(shí),控制電路以PWM方式對(duì)開關(guān)管VT進(jìn)行控制,當(dāng)工作頻率足夠高(例如15~20kHz)時(shí),輸入電流必然是一個(gè)與輸入電壓同相且波形相同的正弦波。

對(duì)于三相輸入的大功率傳統(tǒng)雙變換UPS,其輸入電路是三相整流形成統(tǒng)一的直流母線(同時(shí)配備一組蓄電池),輸入功率因數(shù)校正和升壓原理與單相相似,電路形式有由三個(gè)單相PFC組合式、單開關(guān)三相PFC、三開關(guān)三相PFC、六開關(guān)三相PFC等多種拓?fù)浣Y(jié)構(gòu)形式。圖14中的輸入電路就是六開關(guān)(IGBT)三相PFC原理電路。

六開關(guān)三相PFC是由六只開關(guān)功率器件組成的三相PWM整流電路,圖17是其原理電路。每個(gè)橋路由上下兩只開關(guān)管及與其反向并聯(lián)的二極管組成,每相電流可通過該相橋臂上的這兩只開關(guān)管控制。如A相電壓為正時(shí),VT4導(dǎo)通使電感La上電流ia增大,電感La充電儲(chǔ)能;VT4關(guān)斷時(shí),電感La感應(yīng)電壓疊加在輸入電壓UA上(升壓),使與VT1并聯(lián)的二極管VD1導(dǎo)通,電流ia通過VD1流向負(fù)載,在電感能量釋放過程中電流ia逐漸減小。同樣A相電壓為負(fù)時(shí),可通過VT1和VT4反并聯(lián)的二極管VD4對(duì)電流ia進(jìn)行控制。

六開關(guān)三相PFC原理電路的輸入電壓是380V,峰值是537V,所以此電路的輸出直流電壓可升至800V(±400V),此值正是UPS輸出三相半橋電路所需要的直流母線電壓。

六、結(jié)論

圖21定性的表達(dá)了本文論述的觀點(diǎn)和內(nèi)容。

1, 隨著電路技術(shù)和半導(dǎo)體器件的發(fā)展和創(chuàng)新,UPS電路技術(shù)經(jīng)歷了由多輸出變壓器到單輸出變壓器再到0輸出變壓器的變化過程。反映了去掉輸出變壓器是UPS電路技術(shù)進(jìn)步的必然趨勢(shì)。

2, 定性的表達(dá)了無變壓器UPS在效率、體積、重量、輸入功率因數(shù)等指標(biāo)的優(yōu)勢(shì)。

3, 人們最關(guān)心的是可靠性問題。事實(shí)上在UPS產(chǎn)品推出的初期,帶輸出變壓器的UPS的可靠性也是不高的,一般連續(xù)幾千小時(shí)不發(fā)生故障就算可靠了。所以在討論一個(gè)產(chǎn)品是否可靠時(shí),關(guān)鍵是使用者對(duì)這個(gè)產(chǎn)品可靠性要求的期望值是多大。下面的例子或許可以說明這一問題:馬車與飛機(jī)相比,誰都知道馬車的安全性永遠(yuǎn)比飛機(jī)高。但是,當(dāng)今的社會(huì)人們還是選擇了飛機(jī),難道是人們?yōu)榱耸孢m和效率而不顧生命安全嗎?不是的,人們所以選擇飛機(jī)是因?yàn)轱w機(jī)的安全系數(shù)已經(jīng)超過了人們對(duì)安全要求的期望值。當(dāng)前的器件和電路技術(shù)決定了帶輸出變壓器UPS和不帶輸出變壓器UPS的可靠性都達(dá)到了很高的水平,都超過了人們的期望值,盡管我們不能說不帶輸出變壓器UPS的可靠性比帶輸出變壓器UPS的可靠性還高,但我們有充分的根據(jù)說,不帶輸出變壓器UPS的可靠性已經(jīng)不是問題,而它在效率、體積、重量、輸入功率因數(shù)等方面的優(yōu)勢(shì)卻代表著UPS技術(shù)的發(fā)展趨勢(shì)。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉