在嵌入式系統(tǒng)開發(fā)中,特別是在基于STM32微控制器的項目中,IAP(In-Application Programming)技術為固件更新和升級提供了極大的便利。IAP允許在設備運行期間,通過某種通信接口(如USB、串口等)對設備的閃存進行編程,從而實現(xiàn)遠程更新或修復。然而,在實現(xiàn)IAP功能時,一個關鍵的問題是如何優(yōu)雅地從IAP模式退出并跳轉到業(yè)務APP。本文將深入探討STM32 IAP升級中的退出機制,并解釋為何這一過程實際上是“轉移控制權”而非簡單的退出循環(huán)。
在Linux系統(tǒng)中,進程是操作系統(tǒng)進行資源分配和調度的基本單位。每個進程都擁有一個唯一的標識符,即進程號(PID,Process ID),并伴隨著其獨特的生命周期。這些進程通過復雜的相互關系,共同構成了Linux系統(tǒng)的運行框架。本文將深入探討Linux進程之間的關系,特別是進程家族樹、進程組與會話等概念。
SysTick定時器的工作原理主要基于一個遞減計數(shù)器的機制。以下是對SysTick定時器工作原理的詳細解釋:
如今,在構建新的應用時,很多公司都會想到 “云端優(yōu)先”。但隨著科技的發(fā)展,更好的方法是考慮 “云原生”應用。
在當今的半導體行業(yè)中,我們確實注意到各個工業(yè) 和汽車領域對提高效率的需求不斷增長 ,這促使設計考慮因素發(fā)生重大轉變,特別是在電流感應方面 要求。如果您正在閱讀本文,那么您很可能是尋求更高效率解決方案的設計師隊伍中的一員,因為您的系統(tǒng)變得更加復雜,并且需要能夠處理增加功率的解決方案,特別是當電氣化越來越成為我們日常生活的一部分時生活在大規(guī)模應用中。設計師之間討論的一個主要觀點是,此類需求量的增加如何表明,由于不斷變化的需求,現(xiàn)有的基于磁性的解決方案可能會在 2030 年面臨淘汰?,F(xiàn)代應用需要功能更強大的解決方案,例如寬帶隙 (WBG) 功率器件,從而提高了電流感應的性能要求。
對于在溫度穩(wěn)定但平均溫度不超過 25°C 的環(huán)境中運行的應用,可以使用帶有校準寄存器的實時時鐘 (RTC) 來校正時間。這個概念是從時鐘計數(shù)器中添加或減去計數(shù)以加速或減慢時鐘。校正時間所需的正計數(shù)或負計數(shù)的量可以使用晶體供應商提供的晶體頻率公式來計算。
實時時鐘 (RTC) 從來都不是系統(tǒng)中引人注目的組件。事實上,許多工程師不明白為什么需要 RTC。他們可能認為這是一個非常簡單的設備,只能記錄時間;另外,現(xiàn)在大多數(shù)微控制器都具有內置 RTC 外設。
當談到現(xiàn)實世界中的實際天線時,我們的大部分知識都是經驗性的。我們知道非常廣泛的理論,這些理論解釋了點電荷如何輻射(麥克斯韋方程組)、匹配的必要性(微波理論)以及畫在紙上的偶極子天線如何以它們的方式輻射,但這些定律在解決實際問題時幾乎沒有用處。天線設計的世界難題。通過分享我對無線電子產品在物理層面如何工作的直覺,我希望有助于形成對天線設計和匹配網絡的廣泛理解,并強調最佳實踐和來之不易的智慧的價值。
添加到示波器或數(shù)字化儀的快速傅立葉變換 (FFT) 可以測量所采集信號的頻域頻譜。這提供了一個不同且通常有用的視角;信號可以被視為幅度或相位與頻率的關系圖(圖 1)。
在射頻設計中,我們通常只需要使用基頻工作。例如:在 2.4 GHz RF 設計中,目標是在我們的電路板上產生良好的 2.4 GHz 正弦波,且諧波較低。我們需要關注的頻率實際上是 2.4 GHz。
信號完整性 (SI) 和電源完整性 (PI) 是兩個不同但相關的分析領域,涉及數(shù)字電路的正常運行。在信號完整性方面,主要關注的是確保傳輸?shù)?1 在接收器處看起來像 1(0 也一樣)。在電源完整性方面,主要關注的是確保為驅動器和接收器提供足夠的電流來發(fā)送和接收 1 和 0。因此,電源完整性可以被視為信號完整性的一個子集。實際上,它們都是與數(shù)字電路的正確模擬操作有關的分析。
本系列第一部分中描述的簡單情況在實際應用中很少見。當高頻信號通過非理想路徑(例如 PCB 通孔)時,事情會變得更加復雜,PCB 通孔充當從 PCB 一層到另一層的導體,從而產生阻抗變化。
信號完整性是許多設計人員在高速數(shù)字電路設計中處理的主要主題之一。當信號通過封裝結構、PCB 走線、通孔、柔性電纜和連接器等互連件在從發(fā)送器到接收器的路徑上傳播時,它會導致數(shù)字信號波形的質量下降和時序錯誤。
現(xiàn)代 ASIC 由數(shù)百萬個門和數(shù)十億個晶體管組成,它們通??梢栽诰哂胁煌妷汉蜁r鐘頻率的多個域中運行。為了避免數(shù)據(jù)丟失,設計人員需要確保從一個域發(fā)送到另一域的信號不會導致目標域中寄存器的建立時間或保持時間違規(guī)。以下是跨時鐘域時需要確?;虮苊獾?10 件事。
TMR在不斷發(fā)展的技術進步領域,有一個概念以其徹底改變各個行業(yè)的潛力而脫穎而出:隧道磁阻 (TMR) 技術。雖然它的名字聽起來可能很復雜,但 TMR 背后的原理非常簡單,它提供了一系列好處,從提高效率到提高各種應用的可靠性。