當(dāng)前位置:首頁 > 物聯(lián)網(wǎng) > 網(wǎng)絡(luò)層
[導(dǎo)讀]21ic智能電網(wǎng):摘要: 為抑制直流輸電系統(tǒng)擾動引起的直流電流上升速度,避免輕載時發(fā)生直流電流斷續(xù),以及降低直流側(cè)諧波,需要在換流器直流側(cè)出口裝設(shè)平波電抗器。筆者根據(jù)±800 kV云廣直流輸電系統(tǒng)主回路結(jié)構(gòu)

21ic智能電網(wǎng):摘要: 為抑制直流輸電系統(tǒng)擾動引起的直流電流上升速度,避免輕載時發(fā)生直流電流斷續(xù),以及降低直流側(cè)諧波,需要在換流器直流側(cè)出口裝設(shè)平波電抗器。筆者根據(jù)±800 kV云廣直流輸電系統(tǒng)主回路結(jié)構(gòu),詳細(xì)計(jì)算了平波電抗器的電感參數(shù);特高壓直流輸電系統(tǒng)由于采用特殊的換流器聯(lián)絡(luò)結(jié)構(gòu),其平波電抗器布置不同于±500 kV超高壓直流輸電系統(tǒng)。文中搭建了基于PSCAD/EMTDC的云廣特高壓直流輸電模型,從諧波特性、直流操作過電壓等方面對3種平波電抗器布置方案進(jìn)行了仿真對比研究,其結(jié)果對實(shí)際工程具有一定的指導(dǎo)意義。

0 引言

云南—廣東±800 kV 特高壓直流輸電工程是世界上第1 條±800 kV 直流工程, 其成功投運(yùn)和穩(wěn)定運(yùn)行在世界直流輸電史上具有開創(chuàng)性意義。直流輸電主回路參數(shù)設(shè)計(jì)是直流輸電系統(tǒng)設(shè)計(jì)的主要部分,關(guān)系到整個系統(tǒng)的運(yùn)行性能和經(jīng)濟(jì)技術(shù)指標(biāo)[1-3]。換流器出口處的平波電抗器作為直流輸電工程中重要的一次設(shè)備,其主要作用為:降低直流側(cè)電流諧波和電壓脈動成分, 避免在低直流功率傳輸時電流的斷續(xù);限制電流突變來降低換相失敗率[4-7]。

平波電抗器的電壓和電流額定值是根據(jù)直流主回路確定的,因此對平波電抗器的參數(shù)選擇,主要考慮其電感取值。從平波電抗器抑制擾動時直流電流上升速度和防止輕載時直流電流斷續(xù)的要求來看,其電感值越大越好,但由于電抗器是一個慣性環(huán)節(jié),電感的增大會使電流突變時電抗器的過電壓增加,還會導(dǎo)致直流輸電系統(tǒng)自動調(diào)節(jié)速度下降, 增加電抗器費(fèi)用。因此在滿足主性能的前提下, 電感值越小越好。平波電抗器電感值的選擇需要綜合考慮多方面因素加以權(quán)衡[3]。

與傳統(tǒng)的±500 kV 直流輸電工程不同,±800 kV云廣直流輸電工程采用單極雙12 脈動換流器串聯(lián)(400 kV+400 kV)的運(yùn)行接線方式[8]。其平波電抗器的布置方案也不同于傳統(tǒng)直流工程的只在極母線上裝設(shè)電抗器的方法。目前云廣工程采用的是分別在極母線和中性母線上裝設(shè)1 組平波電抗器的布置方案。由于當(dāng)前特高壓直流輸電缺乏設(shè)備制造和實(shí)際運(yùn)行經(jīng)驗(yàn),新的電抗器布置方案的優(yōu)點(diǎn)和不足需要通過長時間的運(yùn)行效果來檢驗(yàn)。

筆者在云廣特高壓直流工程的主回路結(jié)構(gòu)參數(shù)和實(shí)際運(yùn)行工況的基礎(chǔ)上,詳細(xì)計(jì)算平波電抗器的電感參數(shù),并針對3 種不同的平波電抗器布置方案搭建了基于PSCAD/EMTDC 的云廣特高壓直流輸電系統(tǒng)電磁暫態(tài)模型,通過對系統(tǒng)的穩(wěn)態(tài)、暫態(tài)運(yùn)行特性進(jìn)行仿真分析,對比關(guān)鍵測點(diǎn)的最大持續(xù)運(yùn)行電壓峰值(以下簡稱PCOV)和在典型操作過程中的暫態(tài)過電壓數(shù)值,揭示平抗的布置方案和系統(tǒng)運(yùn)行特性的內(nèi)在聯(lián)系,為云廣特高壓直流輸電工程的設(shè)計(jì)和運(yùn)行維護(hù)提供可以參考的依據(jù)。

1 特高壓直流輸電平波電抗器的電感值選擇

文[9]指出,防止直流電流斷續(xù)這一因素對于平波電抗器電感大小的選擇不起決定作用, 因此,限于篇幅,文中只考慮將抑制擾動時直流電流突變作為選擇平波電抗器電感值的依據(jù)。直流輸電系統(tǒng)發(fā)生擾動時直流電流上升速度過快可能引起逆變側(cè)換相失敗。假設(shè)逆變側(cè)交流電壓不變,在換相開始時刻,逆變器1 個橋發(fā)生故障,導(dǎo)致直流側(cè)電壓在持續(xù)時間為Δt 的換相過程中下降ΔUd,并假設(shè)定熄弧角控制器調(diào)節(jié)誤差為1°,則滿足不發(fā)生換相失敗條件的直流系統(tǒng)等值電感L1為

 

 

式(2)、(3)中:Is為換流器兩相短路的短路電流;γN為逆變器額定熄弧角;IdN是額定直流電流。

根據(jù)±800 kV 云廣特高壓直流輸電工程額定工況和一次設(shè)備參數(shù),已知:整流側(cè)額定電壓UdNr為800 kV,IdN為3.125 kA,γN和γmin分別為18°和7°,逆變側(cè)換流變壓器短路阻抗uk為18.5%;考慮到云廣直流輸電雙極線路的實(shí)際參數(shù)和互感, 有:LL≈195 mH,線路電阻RL=10 Ω。

與平波電抗器的電抗相比,交流系統(tǒng)等值阻抗可忽略不計(jì),因此兩相短路電流Is近似計(jì)算為(單位為kA)

 

 

代入式(3),得到βN約為39°, 再代入式(2), 解得:ΔId=0.659 2 kA。

已知逆變側(cè)直流電壓UdNi=UdNr-RlIdN=768.75 kV,故單橋額定直流電壓ΔUd=UdNi/4=192.187 5 kV,將上述結(jié)果代入式(1),解得L1≈503 mH,從而得:Ld≈308 mH。

由于計(jì)算過程中忽略了控制系統(tǒng)的影響,再考慮到一定的裕度,實(shí)際工程的平波電抗器的電感取300 mH 是完全合理的。

2 3 種不同的云廣特高壓直流工程平波電抗器布置方案

中國已投運(yùn)的±500 kV 直流輸電工程均采用單極2 個6 脈動換流橋串聯(lián)組成1 個12 脈動換流器的聯(lián)絡(luò)結(jié)構(gòu),且平波電抗器全部裝設(shè)在換流器出口處的極母線上。由于特高壓直流輸電工程單極額定直流電壓達(dá)到800 kV,為了降低單個換流變和換流閥的絕緣水平和制造成本,同時滿足多種運(yùn)行形式和操作方式的需要,云廣特高壓直流輸電工程采用單極雙12 脈動串聯(lián)的運(yùn)行接線方式。由于聯(lián)絡(luò)結(jié)構(gòu)的改變,其平波電抗器的布置方案也需要重新考慮,如果采用傳統(tǒng)的平波電抗器方案(以下簡稱方案1),其聯(lián)絡(luò)結(jié)構(gòu)見圖1。

 

 

由于特高壓直流輸電電壓等級高, 輸送容量大,其對減小諧波對電氣設(shè)備應(yīng)力的影響[10]和系統(tǒng)的過電壓絕緣配合有更高的要求,因此,需要對傳統(tǒng)的平波電抗器布置方案進(jìn)行重新評估。目前有2種不同的平波電抗器布置方案被提出,1 種方案為平波電抗器分成相等的2 部分,分別裝設(shè)在極母線和中性母線上(以下簡稱方案2),見圖2。

 

 

另1 種方案為平波電抗器分成2 部分,分別裝設(shè)在極母線上和2 個12 脈動換流器中間的聯(lián)絡(luò)線上(以下簡稱方案3),見圖3。

 

 

直流輸電運(yùn)行特性包括穩(wěn)態(tài)特性和暫態(tài)特性,筆者針對不同的平抗布置方案,主要研究反映其穩(wěn)態(tài)特性的最大持續(xù)運(yùn)行電壓峰值,即PCOV,和反映暫態(tài)特性的換流器交叉閥組解鎖直流操作過電壓,來揭示布置方案對特高壓直流輸電運(yùn)行特性的影響。

目 前過電壓絕緣配合的方法主要是在可能出現(xiàn)較大過電壓的關(guān)鍵點(diǎn)增加避雷器配置。不同于交流避雷器,直流避雷器的保護(hù)水平取決于裝設(shè)點(diǎn)包括換相過沖電壓的最大持續(xù)運(yùn)行電壓峰值(PCOV)[11]。因此,關(guān)鍵測點(diǎn)PCOV 的大小是評估3 種平抗布置方案對直流輸電系統(tǒng)過電壓絕緣水平的影響的重要依據(jù)。

如圖1-3 所示,Uv為高端閥組Y-Y 換流變閥側(cè)A 相電壓,Udh為極母線出口直流電壓,Udm是2 個12 脈動換流器中間聯(lián)絡(luò)母線的電壓,Udv為下12 脈動換流器的2 個6 脈動橋中點(diǎn)的直流電壓。根據(jù)特高壓直流換流站的避雷器配置方案,上述4 個電壓測量點(diǎn)均裝設(shè)相應(yīng)的避雷器,避雷器額定電壓和保護(hù)水平由該點(diǎn)的運(yùn)行電壓和PCOV 決定。當(dāng)平抗布置采用第2 種和第3 種方案時, 由于上下雙12 脈動換流器結(jié)構(gòu)基本對稱,其2 部分電抗器產(chǎn)生的諧波電壓降大小相等,方向相反,因此Udm近似于純直流電壓,而方案1 的Udm諧波含量較大,輸出為脈動較大的直流電壓。Udh為12 脈動換流器各點(diǎn)對地PCOV 與Udm之和,因此方案1 的Udh諧波含量大于方案2、3 的諧波含量,其PCOV 也大于另外2 個方案中的PCOV, 這也將提高換流變壓器高端閥組側(cè)電壓Uv處的運(yùn)行峰值和避雷器保護(hù)水平,增大相應(yīng)設(shè)備的穩(wěn)態(tài)應(yīng)力,不利于系統(tǒng)安全經(jīng)濟(jì)運(yùn)行。此外,Udm的諧波含量太大導(dǎo)致數(shù)值波動較大, 將造成以Udm為輸入?yún)⒖茧妷旱恼鱾?cè)定電壓控制器不能起到穩(wěn)定的控制作用。

特高壓直流輸電工程采用單極雙12 脈動換流閥串聯(lián)的接線形式,每個閥組都并聯(lián)了旁路斷路器和旁路隔離開關(guān),使得每個閥組可以單獨(dú)的投運(yùn)或者退出,運(yùn)行方式和操作種類數(shù)量大大增加[12]。典型的操作包括在單極低端12 脈動換流器解鎖的情況下,解鎖高端閥組,根據(jù)云廣直流工程調(diào)試過程中的記錄, 該操作多次造成Udv過電壓太大,Udv處避雷器動作。經(jīng)初步分析,該避雷器動作原因與平波電抗器布置在中性母線上有關(guān)。

3 3 種平波電抗器布置方案的仿真研究

在實(shí)際工程中改變平波電抗器布置方案進(jìn)行試驗(yàn)研究,由于其涉及到的工程復(fù)雜,成本太高,難以實(shí)施,不具有操作性。因此,利用電磁暫態(tài)軟件建模仿真是1 種簡捷、方便、有效的途徑。

PSCAD/EMTDC 是目前世界上被廣泛使用的1種電力系統(tǒng)分析軟件,其主功能包括電力系統(tǒng)時域和頻域計(jì)算仿真,典型應(yīng)用是計(jì)算電力系統(tǒng)遭受擾動或參數(shù)變化時,電參數(shù)隨時間變化的規(guī)律。其在高壓直流輸電系統(tǒng)領(lǐng)域的仿真研究具有較高的權(quán)威性。筆者利用PSCAD/EMTDC 軟件搭建了±800 kV云廣特高壓直流輸電工程模型,并針對應(yīng)用3 種不同的平抗布置方案的特高壓直流輸電系統(tǒng)進(jìn)行仿真研究,對比其穩(wěn)態(tài)和暫態(tài)運(yùn)行特性,揭示各種方案的優(yōu)缺點(diǎn)。

特高壓直流輸電模型中,交流系統(tǒng)采用無窮大等值電源模擬,換流變、交直流濾波器等一次設(shè)備均采用實(shí)際參數(shù),平波電抗器總電感值取上文中計(jì)算得到的300 mH, 直流架空線路采用軟件自帶的貝杰龍線路模型,參數(shù)均為實(shí)測所得??刂品绞綖镃IGRE HVDC 標(biāo)準(zhǔn)模型的控制模式?;诓煌桨傅? 種模型整流側(cè)單極接線圖分別為圖1-3, 由于另一極以及逆變側(cè)的接線方式具有高度對稱性,限于篇幅不再給出。

當(dāng)云廣特高壓直流輸電系統(tǒng)運(yùn)行在額定工況時,Uv、Udh、Udm的仿真波形分別見圖4-6。

 

 

 

 

雙12 脈動換流器中間聯(lián)絡(luò)線電壓Udm的諧波含量取決于上下兩組12 脈動換流器參數(shù)的對稱度,包括上下兩閥組換流變基本參數(shù)、觸發(fā)角、對地雜散電容、平波電抗器的電感值等。在仿真中忽略了雜散電容的影響,換流變、觸發(fā)角等參數(shù)一致,因此,Udm的諧波含量取決于平抗的布置方式。見圖6,由于方案2、3 的平波電抗器分開布置在極母線和中性線或中間聯(lián)絡(luò)線上, 其對稱度遠(yuǎn)高于方案1,Udm近似為純直流電壓,而方案1 中Udm的5、7 次諧波含量明顯較大。

單個12 脈動換流器各處對地PCOV 可以按傳統(tǒng)500 kV 的12 脈動換流器各點(diǎn)對地PCOV 的公式計(jì)算, 然后加上中間聯(lián)絡(luò)母線的直流電壓或者PCOV。因此Udm的大小和波形直接影響到Uv、Udh,如圖4、5 所示,方案1 中的換流變閥側(cè)PCOV 和極母線PCOV 明顯大于方案2、3 中相應(yīng)的PCOV,因此,采用方案2、3 時,可以有效降低安裝在換流變閥側(cè)和極母線處的避雷器的額定電壓,降低避雷器保護(hù)水平, 也可降低上組12 脈動換流器各點(diǎn)的絕緣水平、減小穩(wěn)態(tài)應(yīng)力[13]。其中,方案3 中換流變閥側(cè)PCOV 要略高于方案2, 是因?yàn)槠讲娍蛊餮b設(shè)在中性母線時,雙脈動換流器結(jié)構(gòu)對稱度更高。

直流操作過電壓是直流輸電工程較為常見的過電壓現(xiàn)象,云廣特高壓直流工程在調(diào)試過程中出現(xiàn)過因直流過電壓太大造成避雷器動作的事例:2010 年1 月7 日11:38, 楚雄換流站在極2 低端閥組帶功率運(yùn)行的情況下,解鎖極2 高端閥組的操作時, 低端閥組2 個6 脈動換流器中點(diǎn)瞬時電壓Udv過大,導(dǎo)致該處避雷器動作。文中對該操作過程進(jìn)行模擬仿真, 在不裝設(shè)避雷器的情況下觀察Udv的暫態(tài)波形,結(jié)果見圖7-9(為了便于觀察,輸出結(jié)果設(shè)置為正極性)。

 

 

圖7-9 中所示直流輸電系統(tǒng)在0.6 s 前為單極低端閥組在額定工況下運(yùn)行,0.6 s 時解鎖高端閥組,同時斷開旁路斷路器,系統(tǒng)由單閥組運(yùn)行轉(zhuǎn)為雙閥組運(yùn)行狀態(tài)。

由以上3 圖可以看出,3 個方案中,在解鎖高端閥組瞬間,由于運(yùn)行狀態(tài)的突然改變和非線性元件的特性,低端2 個6 脈動換流器中點(diǎn)處均會出現(xiàn)過電壓,方案1 和方案3 的過電壓峰值較接近,約為420 kV,方案2 的過電壓峰值達(dá)到了600 kV,其中方案2 的過電壓峰值大大高于低端閥廳避雷器的額定電壓,導(dǎo)致避雷器動作。

仿真結(jié)果說明, 平波電抗器布置在中性母線上,提高了閥底部設(shè)備的絕緣水平,包括最低電位換流變閥側(cè)絕緣水平[14],同時導(dǎo)致閥底部的操作過電壓增加,從而使低端閥廳內(nèi)2 個6 脈動換流器中點(diǎn)處的過電壓增大,造成避雷器動作。

平波電抗器布置在2 個12 脈動換流器中點(diǎn)處固然可以降低低端閥廳內(nèi)操作過電壓,但是由于平抗處于400 kV 電位,污閃可能性增大,增加了支柱絕緣子的投資。

4 結(jié)論

1)筆者根據(jù)云廣特高壓直流輸電工程實(shí)際工況和主回路參數(shù)計(jì)算了滿足主性能的平波電抗器電感值,其電感值不能過大和過小,應(yīng)兼顧系統(tǒng)運(yùn)行的經(jīng)濟(jì)性和安全可靠性。

2)對提出的3 種平波電抗器布置方案進(jìn)行對比研究,表明平波電抗器布置在中性母線上可以降低高電位換流器各點(diǎn)的PCOV 和絕緣保護(hù)水平,減小相應(yīng)電氣設(shè)備的穩(wěn)態(tài)應(yīng)力[15],減少極母線和雙12 脈動換流器中點(diǎn)處諧波含量,有利于定電壓控制器的運(yùn)行。仿真結(jié)果驗(yàn)證了理論研究的正確性。

3)仿真表明,中性母線裝設(shè)平波電抗器時,低端閥廳內(nèi)直流操作過電壓增大, 導(dǎo)致避雷器多次動作,威脅閥廳內(nèi)的設(shè)備安全。目前投運(yùn)的低端閥組中點(diǎn)處避雷器運(yùn)行電壓遠(yuǎn)小于其操作過電壓,初步推斷原因?yàn)楸芾灼鲄?shù)設(shè)計(jì)不合理。

參考文獻(xiàn):

[1] 浙江大學(xué)直流輸電科研組.直流輸電[M]. 北京:水利電力出版社,1985.HVDC Research Group of Zhejiang University.Directcurrent power transmission[M]. Beijing:China Water PowerPress,1985.

[2] 李興源.高壓直流輸電系統(tǒng)的運(yùn)行和控制[M]. 北京: 科學(xué)技術(shù)出版社,1998.LI Xing-yuan.The operation and control of HVDC system[M].Beijing:Science and Technology Press,1998.

[3] 李立浧.直流輸電技術(shù)的發(fā)展及其在我國電網(wǎng)中的作用[J].電力設(shè)備,2004,7(11):1-3.LI Li-cheng.Development of HVDC transmission technologyand its role in power network in China[J]. ElectricalEquipment,2004,7(11):1-3.

[4] 趙畹君.高壓直流輸電工程技術(shù)[M]. 北京:中國電力出版社,2004.ZHAO Wan-jun.High voltage DC transmission engineeringtechnology[M]. Beijing:China Electric Power Press,2004.

[5] 楊汾艷,徐政. 直流輸電系統(tǒng)平波電抗器電感參數(shù)的選擇研究[J]. 高壓電器,2009,45(3):8-10.YANG Fen-yan,XU Zheng. Selection of smoothingreactance for HVDC projects[J]. High Voltage Apparatus,2009,45(3):8-10.

[6] 王其兵,丁明,蘇建徽,等. SVM 電流源型變頻器平波電抗器的設(shè)計(jì)[J]. 高壓電器,2011,46(3):53-58.WANG Qi-bing,DING Ming,SU Jian-hui,et al.Smoothingreactor design for SVM current source converter[J]. HighVoltage Apparatus,2011,46(3):53-58.

[7] 鞠非.無功補(bǔ)償電容器串聯(lián)電抗器的選擇[J]. 電力電容器,2006,27(6):4-7.JU Fei. Parameters selection of series reactor in shuntreactive compensation insta [J]. Power Capacitor,2006,27(6):4-7.

[8] 中國南方電網(wǎng)公司.±800 kV 直流輸電技術(shù)研究[M]. 北京:中國電力出版社,2006.China South Power Grid.The research on ±800 kV HVDCtechnology[M]. Beijing:China Electric Power Press,2006.

[9] 徐政.交直流電力系統(tǒng)動態(tài)行為分析[M]. 北京:機(jī)械工業(yè)出版社,2004.XU Zheng. The dynamic character analysis of AC/DC powersystem[M]. Beijing:China Machine Press,2004.

[10] BJORKLAND P E ,JONSSON T. Capacitor commutatedconverters for HVDC system[K]. ABB: REVIEW,1997.

[11] 周沛洪,修木洪,谷定燮,等.±800 kV 直流系統(tǒng)過電壓保護(hù)和絕緣配合研究[J]. 電力建設(shè),2007,28(1):18-19.ZHOU Pei-hong,XIU Mu-hong,GU Ding-xie,et al. Studyof ±800 kV DC system over-voltage protection andinsulation coordination[J]. Electric Power Construction,2007,28(1):18-19.

[12] 王慶,石巖,陶瑜,等.±800 kV 直流輸電系統(tǒng)雙12脈動閥組平衡穩(wěn)定運(yùn)行及投退策略的仿真研究[J]. 電網(wǎng)技術(shù),2007,31(17):1-6.WANG Qing,SHI Yan,TAO Yu,et al.Simulation study oncontrol strategy for balanced steady operation and block/deblock of dual 12-pulse converter groups in ±800 kV DCtransmission project[J]. Power System Technology,2007,31(17):1-6.

[13] IEC 60700-1:1998.Thyristor valves for high voltage directcurrent (HVDC) power transmission: Part 1 [S].

[14] DL/T 605—1996.高壓直流換流站絕緣配合導(dǎo)則[S].DL/T 605—1996.Guide for insulation coordination ofHVDC converter station[S].

[15] 周沛洪,趙杰,呂金壯,等.±800 kV 云廣DC 換流站避雷器布置和參數(shù)選擇[J]. 高電壓技術(shù),2009,35(11):2603-2611.ZHOU Pei-hong,ZHAO Jie,L譈Jin-zhuang,et al.Arresterprotection scheme and arreseter parameters selection for±800 kV Yun-Guang UHVDC converter station [J]. HighVoltage Engineering,2009,35(11):2603-2611.

更多好文:21ic智能電網(wǎng)

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉