升壓轉(zhuǎn)換器--可提升白光LED的電池電壓
白光 LED 正一路殺入白熾燈以前大行其道的許多市場(chǎng)。閃光燈進(jìn)入了更新型的應(yīng)用領(lǐng)域,其中其所展顯出的可靠性、耐久性以及 LED 功耗控制能力使這些器件極具吸引力。在采用白熾燈時(shí),對(duì)器件的電源管理只是簡(jiǎn)單的開(kāi)關(guān)切換。然而 LED 不能直接采用閃光燈中典型的兩個(gè)電池進(jìn)行操作,因?yàn)樗鼈円蟮碾妷菏墙橛?2.8~4V 之間的,而相比之下電池電壓只有 1.8~3V。電源管理的復(fù)雜性有所增加,因?yàn)?LED 的光輸出與電流相關(guān),而 LED的特征與電壓呈現(xiàn)出極端非線性的關(guān)系。解決此問(wèn)題的方法之一是提高電源的電流限制。目前市場(chǎng)上有眾多可用的 LED 應(yīng)用器件;但是,對(duì)于閃光燈應(yīng)用所需的 1~5W 功率而言,它們的額定電流通常都太低了。
圖1:升壓轉(zhuǎn)換器IC是提升驅(qū)動(dòng)白光LED電壓的正確選擇。
圖1說(shuō)明了一種通??商嵘娫凑{(diào)節(jié)器的方案。升壓轉(zhuǎn)換器 IC - IC1可以產(chǎn)生白光LED所需要的更高電壓。內(nèi)部升壓功率級(jí) (buck power stage) 可連接 VIN 與 PGND,從而為輸出引腳L 提供電流。此電路通過(guò)打開(kāi)高端開(kāi)關(guān)進(jìn)行操作,從而可以連接電感器 L1 上的電池電壓。一旦電感器 L1 儲(chǔ)存了足夠的能量,高端開(kāi)關(guān)即關(guān)閉。電感器電流可驅(qū)動(dòng)開(kāi)關(guān)節(jié)點(diǎn)切換到負(fù)極,并驅(qū)動(dòng)能量通過(guò)低端轉(zhuǎn)移到輸出電容器 C1,從而創(chuàng)建基本無(wú)損耗的開(kāi)關(guān)事件。另外,由于高端與低端開(kāi)關(guān)是 MOSFET,因此壓降低于二極管實(shí)施;從而可以實(shí)現(xiàn)極高的效率。轉(zhuǎn)換器 IC 通過(guò)電流感應(yīng)電阻器能監(jiān)控流經(jīng) LED 的電流,同時(shí)將電流感應(yīng)電壓與轉(zhuǎn)換器 IC 中的內(nèi)部 0.45V 參考電壓進(jìn)行對(duì)比,以實(shí)現(xiàn)調(diào)節(jié)功能。因此,電流與照度是電流感應(yīng)電阻器電壓的函數(shù)。盡管 IC 的內(nèi)部參考電壓比其他大多數(shù) IC 的電壓要低,但其確實(shí)會(huì)造成可測(cè)量的功率損耗。在采用 2.8~4V 的 LED 電壓時(shí),其會(huì)使效率降低 10~14%。通過(guò)降低電阻器值,并采用放大器感應(yīng)低電壓時(shí)的電流可以降低這種損耗。
圖2:電阻性電流感應(yīng)會(huì)對(duì)圖1中電路的效率產(chǎn)生負(fù)面影響。
圖2顯示了在350mA電流調(diào)整點(diǎn)時(shí)的負(fù)載電流調(diào)節(jié)與升壓電壓。效率在正常的電池電壓范圍內(nèi)達(dá)到80%以上,但是隨著電池電壓降低到壽命終點(diǎn)值,效率會(huì)降低。另外,該圖還說(shuō)明了電阻性電流感應(yīng)的影響。在高輸入電壓時(shí),效率接近95%,而在低輸入電壓時(shí),效率將降低到80%。曲線的趨勢(shì)源自兩個(gè)相關(guān)的效應(yīng):在高輸入電壓時(shí),輸入電流和開(kāi)關(guān)電流較低。因此,傳導(dǎo)性和開(kāi)關(guān)損耗較低。其次,與自耦變壓器極其類似, 升壓功率級(jí)不處理總輸入功率。功率級(jí)處理的功率量與升壓電壓相關(guān),或者與輸入電壓和LED電壓之間的壓差相關(guān)。在此設(shè)計(jì)中,LED電壓大約為3.7V,因此,在3.2V的高壓線路上,功率級(jí)只處理功率的13%((3.7-3.2)/3.7)。在電流高得多的低壓線路上,功率級(jí)可以處理4倍功率,也就是說(shuō) 50% 的功率。