計(jì)算機(jī)電源“白金”化
80+TM 和計(jì)算機(jī)產(chǎn)業(yè)拯救氣候行動(dòng)計(jì)劃 (Climate Savers Computing) ™ 給計(jì)算機(jī)電源設(shè)立了一個(gè)強(qiáng)有力的效率標(biāo)準(zhǔn)。這些標(biāo)準(zhǔn)的“白金”級(jí)別規(guī)定計(jì)算機(jī)電源在 20% 額定負(fù)載狀態(tài)下必須有 90% 的效率,50% 額定負(fù)載時(shí)效率必須達(dá)到94%,而在 100% 負(fù)載時(shí)效率必須達(dá)到 91%。為了滿足這些標(biāo)準(zhǔn),一些電源設(shè)計(jì)人員選擇使用一個(gè)具有同步整流的相移、全橋接 DC/DC 轉(zhuǎn)換器。這種拓?fù)浣Y(jié)構(gòu)是一種比較好的選擇,因?yàn)樗梢栽谥?FET 上實(shí)現(xiàn)零電壓開(kāi)關(guān) (ZVS)。一種普遍使用的驅(qū)動(dòng)同步整流器的方法是利用已經(jīng)存在的信號(hào)驅(qū)動(dòng)主 FET。這樣做存在的唯一問(wèn)題是要求主 FET 時(shí)滯,以實(shí)現(xiàn)零電壓開(kāi)關(guān)。這會(huì)導(dǎo)致兩個(gè)同步整流器在快速續(xù)流期間同時(shí)關(guān)閉,從而允許過(guò)多的體二極管導(dǎo)電,最終降低系統(tǒng)效率。本文的目的是建議使用不同的時(shí)序,驅(qū)動(dòng)這些同步整流器,從而減少體二極管導(dǎo)電并最終提高整體系統(tǒng)效率。
市場(chǎng)上有一些脈寬調(diào)制器 (PWM),其設(shè)計(jì)目標(biāo)是用于控制相移、全橋接轉(zhuǎn)換器,而非驅(qū)動(dòng)同步整流器 (QE 和 QF)。工程師們發(fā)現(xiàn)他們可以通過(guò) PWM 控制器的控制信號(hào)OUTA和OUTB來(lái)控制同步 FET,這樣便可以在本應(yīng)用中使用這些控制器。圖 1 顯示了其中一款轉(zhuǎn)換器中的一個(gè)功能示意圖。
圖 1 同步整流改進(jìn)型相移、全橋接轉(zhuǎn)換器
問(wèn)題
通過(guò)延遲H橋接(QA、QB、QC、QD)的 FET 導(dǎo)通,PWM 控制器有助于在這些轉(zhuǎn)換器中實(shí)現(xiàn) ZVS。FET QA 和 QB 導(dǎo)通和斷開(kāi)轉(zhuǎn)換過(guò)渡之間的延遲 (tDelay) 會(huì)使同步 FET QE 和 Q F同時(shí)斷開(kāi),從而允許其主體二極管實(shí)施上述導(dǎo)電行為。下列方程式較好地估算了續(xù)流期間 QE 和 QF 的主體二極管傳導(dǎo)損耗:
其中 POUT 為輸出功率,VOUT 為輸出電壓,VD 為主體二極管的正向壓降,而 fs 為電感開(kāi)關(guān)頻率。
QE 和 QF 的主體二極管傳導(dǎo)損耗 (PDiode) 過(guò)多會(huì)使設(shè)計(jì)達(dá)不到“白金”標(biāo)準(zhǔn)。更多詳情,請(qǐng)參見(jiàn)圖 1 和圖 2。如圖所示,OUTA 驅(qū)動(dòng) FET QA 和 QF,而 OUTB 驅(qū)動(dòng) FET QB 和 QE。V1 為 LOUT 和 COUT 濾波器網(wǎng)絡(luò)輸入的電壓,而 VQEd 和 VQFd 為相應(yīng)同步整流器 QE 和 QF 的電壓。
圖 2 圖 1 所示轉(zhuǎn)換器的時(shí)序圖
[!--empirenews.page--]
解決方案
若想減少 QE 和 QF 主體二極管導(dǎo)電,最好是在 QA 和 QB 延遲期間 (tDelay) 讓這些同步整流器開(kāi)啟。要做到這一點(diǎn),必須通過(guò)其自有輸出來(lái)驅(qū)動(dòng) FET QE 和 QF,其中“導(dǎo)通”時(shí)間而非同步的“斷開(kāi)”時(shí)間會(huì)重疊。圖 3 顯示了具有 6 個(gè)單獨(dú)驅(qū)動(dòng)信號(hào)(OUTA 到 OUTF)的相移、全橋接轉(zhuǎn)換器的功能示意圖。通過(guò)根據(jù) QA 到 QD 的邊緣,導(dǎo)通和斷開(kāi) OUTE 及 OUTF,可以產(chǎn)生 QE (OUTE) 和 QF (OUTF) 的信號(hào)。表 1 和圖 4 顯示了完成這項(xiàng)工作所需的時(shí)序。圖 4 所示理論波形表明,這種技術(shù)去除了主體二極管導(dǎo)電,其會(huì)在 tDelay 期間兩個(gè)柵極驅(qū)動(dòng)均為斷開(kāi)時(shí),與圖 2 所示柵極驅(qū)動(dòng)信號(hào)一起出現(xiàn)。
表 1 OUTE 和 OUTF 導(dǎo)通/斷開(kāi)過(guò)渡轉(zhuǎn)換
圖 3 使用表 1 時(shí)序的相移、全橋接轉(zhuǎn)換器
圖 4 減少 QE 和 QF 體二極管導(dǎo)電的時(shí)序圖
試驗(yàn)結(jié)果
為了查看這種技術(shù)在減少主體二極管導(dǎo)電方面的效果如何,我們對(duì)一個(gè) 390-V 到 12-V 相移、全橋接轉(zhuǎn)換器進(jìn)行了改進(jìn),旨在通過(guò)圖 2 和 4 所示信號(hào)驅(qū)動(dòng) FET。
圖 5 QE 和 QF 主體二極管導(dǎo)電波形圖
圖 5 顯示了同步FET(QE 和 QF)柵極的波形圖,它們通過(guò) OUTA 和 OUTB PWM 輸出驅(qū)動(dòng)。圖中,在 OUTA 和 OUTB 之間的延遲時(shí)間 (tDelay) 期間可以觀測(cè)到主體二極管導(dǎo)電。
[!--empirenews.page--]
下一頁(yè)的圖 6 顯示了同步FET(QE 和 QF)柵極的波形圖,它們通過(guò)圖 3 所示 OUTE 和 OUTF 信號(hào)驅(qū)動(dòng)。這些信號(hào)都產(chǎn)生自 TI 新的 UCC28950 相移、全橋接控制器。圖 6 表明 FET QE 和 QF 導(dǎo)通的同時(shí)主體二極管沒(méi)有導(dǎo)電。盡管仍然可以看到一些主體二極管導(dǎo)電,但沒(méi)有圖 5 那么多。
圖 6 顯示了 QE 和 QF 低主體二極管導(dǎo)電的波形圖
我們對(duì)兩種驅(qū)動(dòng)方案(OUTA 和 OUTB 與 OUTE 和 OUTF)從 20% 到滿負(fù)載條件下 600-W DC/DC 轉(zhuǎn)換器的效率進(jìn)行了測(cè)量。在下一頁(yè)的圖 7 中,顯示了這兩種驅(qū)動(dòng)方案的轉(zhuǎn)換器效率數(shù)據(jù)。我們可以看到,相比使用 OUTA 和 OUTB,在 50% 到 100% 負(fù)載時(shí)使用 OUTE 和 OUTF 的效率高出約 0.4%。0.4% 效率增加看起來(lái)似乎并不多,但在設(shè)計(jì)人員努力想要達(dá)到“白金”標(biāo)準(zhǔn)時(shí)效果就不一樣了。
圖 7 不同 QE 和 QF 驅(qū)動(dòng)方案下 600-W DC/DC 轉(zhuǎn)換器的效率
結(jié)論
即使我們可以通過(guò)一個(gè)并非為同步整流(OUTA 和 OUTB 驅(qū)動(dòng)方案)而設(shè)計(jì)的相移、全橋接控制器來(lái)對(duì)一個(gè)具有同步整流器的相移、全橋接轉(zhuǎn)換器進(jìn)行控制,實(shí)現(xiàn) ZVS 所要求的 OUTA 和 OUTB 之間接通延遲也會(huì)使兩個(gè)同步 FET 在同一時(shí)間 (tDelay) 關(guān)閉。這種延遲會(huì)導(dǎo)致在 FET 快速續(xù)流期間出現(xiàn)過(guò)多的體二極管導(dǎo)電。本文表明更加有效的方法是:在快速續(xù)流期間疊加同步整流器的“接通”時(shí)間,以便讓體二極管不導(dǎo)電。利用這種方法,雖然體二極管導(dǎo)電并沒(méi)有完全消失,但其被極大減少,從而提高了整體系統(tǒng)效率,讓“白金”效率標(biāo)準(zhǔn)更容易達(dá)到。