當前位置:首頁 > 電源 > 數(shù)字電源
[導讀]摘要 Giga ADC是TI推出的采樣率大于1GHz的數(shù)據(jù)轉換產(chǎn)品系列,主要應用于微波通信、衛(wèi)星通信以及儀器儀表。本文介紹了Giga ADC的主要架構以及ADC輸出雜散的成因分析,以及

摘要

Giga ADC是TI推出的采樣率大于1GHz的數(shù)據(jù)轉換產(chǎn)品系列,主要應用于微波通信、衛(wèi)星通信以及儀器儀表。本文介紹了Giga ADC的主要架構以及ADC輸出雜散的成因分析,以及優(yōu)化性能的主要措施。

1、Giga ADC架構及TI的Giga ADC

1.1 Giga ADC架構演進

Giga ADC目前已經(jīng)廣泛的應用于數(shù)據(jù)采集、儀器儀表、雷達和衛(wèi)星通信系統(tǒng);隨著采樣速率和精度的進一步提高,越來越多的無線通信廠商開始考慮使用Giga ADC實現(xiàn)真正的軟件無線電。軟件無線電不僅可以簡化接收通道設計,同時可以方便不同平臺的移植和升級,從而降低開發(fā)成本和周期。



Figure 1列出了在使用各種采樣架構下,采樣精度和采樣速率之間關系。隨著技術和工藝的發(fā)展,各種架構可以支持的采速率在不斷的提升,但就目前的水平來看,要實現(xiàn)1Gpbs以上的采樣率,必須采用Flash或者折疊(Folding)架構。

這主要是因為在其它架構中,都采用了反饋環(huán)路;這些反饋環(huán)路的傳輸延時限制了ADC速率的進一步提升。例如在pipeline中,每一級都有一個DAC,用于把本級的數(shù)據(jù)輸出轉換成模擬信號,反饋給本級的模擬輸入,取差以后放大輸出給下一級。類似的限制也存在于Subranging或者multi-step架構中,都需要一個反饋環(huán)路輔助判決。

另一方面,雖然目前業(yè)界最快的ADC架構是Flash架構,但一個N bit的flash ADC需要2N-1個比較器,當N>= 8時,比較器的數(shù)量將會非常龐大;而且隨著轉換精度的增加,后端的譯碼邏輯也會變得異常復雜;這些都會對芯片的體積和功耗造成很大的影響。

所以在TI的Giga ADC中,采用了折中的折疊(folding)架構。事實上,折疊是和flash類似的架構,不同的是,在折疊架構中,輸入信號分別通過了粗分ADC和折疊電路+細分ADC;折疊電路的理想傳輸特性為三角狀循環(huán)的折疊信號。以一個8bit ADC為例,粗分ADC輸出3bit,細分ADC輸出5bit.如Figure 2和Figure 3所示,折疊電路共折疊了8次,將滿量程的輸入范圍等分為8段,分別對應3位粗分ADC轉換產(chǎn)生的高位bit(MSB);同時對上述折疊電路輸出信號進行5位細化轉換得到低位bit(LSB);最后高、低位數(shù)字碼合起來組成8位的數(shù)字輸出。

對于一個8bit ADC,采用折疊電路架構所需要的比較器個數(shù)為(m = 3,n = 5);如果采用flash架構,則需要比較器的個數(shù)為。顯而易見,采用折疊架構大大降低了比較器的個數(shù)。



1.2 TI Giga ADC產(chǎn)品介紹

TI在過去的十年當中,利用創(chuàng)新的ADC架構和工藝技術,不斷的刷新業(yè)界Giga ADC的采樣速率和轉換精度,最新的產(chǎn)品已經(jīng)可以達到5Gbps @ 7.6bit(LM97600)和4Gpbs @ 12bit(ADC12D2000RF)。Figure 4是目前TI全系列的Giga ADC產(chǎn)品:



2、TI Giga ADC架構介紹

本章節(jié)中將詳細討論Giga ADC的各個功能模塊。在實際應用中,設計者一般都會采用Folding + interpolation + calibration的架構,用于進一步簡化設計,降低功耗和提高精度。



上圖是一個典型的folding-interpolation架構的Giga ADC框圖。在這類ADC中,為了解決模擬輸入端的匹配誤差和輸入偏置誤差,集成了一個校準信號源,在不需要外部輸入的情況下,實現(xiàn)芯片的前臺校準,使芯片達到最大性能。除此之外,還包括輸入的buffer,采保電路,foldinginterpolation電路以及比較器、encoder和LVDS輸出電路。

2.1 Input mux

在Figure 5中可以看到,為了盡可能的把輸入鏈路上所有器件包含到校準環(huán)路中,校準信號的輸入開關加在了輸入電路的最F前端。這對開關電路的線性和帶寬提出了很高的要求。在TI的Giga ADC電路中,采用了constant Vgst NMOS pass-gate電路,這種電路不僅寬頻帶內(nèi)導通電阻穩(wěn)定不變,失真小,而且功耗低。

電路校準只在器件上電或者器件工作溫度發(fā)生明顯變化的時候才會發(fā)起,輸入校準開關也只在這個時候才會導通。



2.2 Interleaved T/H

在高速ADC設計中,為了達到更高的采樣速率,采用了interleaved的架構,即一個模擬輸入,輸入到兩個相同的ADC中,但這兩個ADC的采樣速率相同,相位相反;最后芯片的數(shù)字部分把兩路ADC的輸出信號重新整合,達到了相對于每路ADC兩倍的采樣速率。將采樣保持電路放在第一級buffer之后,主要是因為這一級buffer降低了輸入信號的負載和kickback噪聲,方便寬帶匹配;同時降低了采保電路的工作頻率,使得采保電路和第二級buffer的設計和功耗大大簡化。

需要注意的是,在interleaved架構中,兩路采樣保持電路和buffer的偏置和增益誤差,以及兩路采樣時鐘之間的相位誤差,都會給整個ADC系統(tǒng)SNR帶來很大的影響。在設計中,兩路電路采用了完全鏡像的設計,同時兩路電路都在校準環(huán)路里,有效的降低了這些誤差帶來的性能惡化。



2.3 Preamplifier

預放大電路處于采保電路之后,比較器之前,包括第二級輸入buffer,折疊內(nèi)插電路等。預放大電路的主要功能包括:輸入信號的放大,以降低電路偏置誤差對性能的影響;輸入信號的折疊處理,將輸入信號通過折疊電路分成若干部分,從而降低比較器的個數(shù);通過內(nèi)插電路增加信號過零點,減少折疊電路模塊。

2.3.1第二級輸入buffer

第二級輸入buffer的主要作用就是要把采保電路輸出的偽差分信號通過差分放大器轉換成真正的差分信號,以達到更好的電源抑制比和方便后級處理。第二級buffer輸出的差分信號分成兩路,一路輸出給粗分轉換電路,用于判決輸入信號處于那一個折疊區(qū);一路輸出給細分轉換電路,輸出具體的轉換數(shù)據(jù)。

2.3.2折疊電路



Figure 8為一種實際折疊電路及其直流傳輸特性。Figure 8(a)中,輸入信號Vin和5個量化參考電平Va、Vb、Vc、Vd和Vf;5個源極耦合對的漏極交替連接,通過負載電阻R1和R2的I/V變換,形成一對5倍折疊(折疊率F = 5)的差分折疊信號Vo +與Vo -,如Figure 8(b)所示。Figure 8(b)中,直流傳輸特性上差分輸出為零的點稱為過零點??梢姡诉^零點附近,實際折疊電路的傳輸特性存在著一定的非線性區(qū)域。為解決非線性區(qū)域上輸入信號的量化問題,可采用兩個具有一定相位差的折疊信號,如Figure 9所示。它們之間的相位差保證了各自的非線性區(qū)域相互錯開。


當一個折疊輸出信號不是在線性區(qū)域范圍內(nèi)時,另一個折疊輸出信號恰好在線性區(qū)域內(nèi),反之亦然。這種方法可以推廣到相位差更小的一組折疊信號的情況,以減小非線性區(qū)域的影響。直至,相鄰折疊信號的過零點只相距一個量化單位(LSB)時,每個與折疊電路連接的比較器只需檢出過零點。此時,折疊結構ADC不再要求折疊信號的線性區(qū)域范圍,只要求過零點的精度。

在折疊電路設計中,一級折疊電路折疊率不宜過高,這主要是因為,如果一級折疊率過高,那么這么多輸出通過長的走線連接到一起輸出給下一級比較器,寄生電容對于后級的影響變得不可忽略。在TI的Giga ADC中,一般采用多級折疊電路級連的方式,例如,如果要實現(xiàn)一個折疊率為9的電路,采用了兩級折疊級連,每級的折疊率是3,如figure10所示。



2.3.3內(nèi)插電路

直接利用折疊電路來產(chǎn)生所有2N個過零點,ADC的功耗與輸入電容都很大。通常的解決辦法是采用折疊-內(nèi)插結構,如Figure11所示。每兩個折疊電路的輸出之間連接一個插值電阻串,利用插值電阻的分壓作用得到兩個折疊電壓信號之間的插值電壓。每個插值節(jié)點作為輸出,插值的數(shù)目稱為內(nèi)插率I;Figure11是當I=4的內(nèi)插結果,兩側為原始的由折疊電路產(chǎn)生的折疊信號,夾在其間的3個信號是被節(jié)省的、由內(nèi)插電路產(chǎn)生的折疊信號。這樣,通過4倍的內(nèi)插,每4個折疊信號可以節(jié)省3個折疊電路。



通過折疊內(nèi)插電路的波形如下圖所示:



2.3.4平均電路

前面提到,影響電路精度的主要誤差是差分信號的偏置誤差。降低差分電路的偏置誤差可以增加晶體管的面積。但由于在折疊電路中,偏置誤差不僅僅來自于差分電路,折疊電路中其它飽和支路的輸出電流也增加了整個電路的偏置誤差,簡單的增加電路晶體管面積并不能有效的降低誤差。由于各個放大電路的偏置誤差是不相關的,這里采用了迭代的技術,使某一輸出節(jié)點的偏置誤差不僅僅取決于本身放大電路,還和相鄰其它并行放大電路輸出有關,偏置誤差通過放大電路輸出的迭代而隨機化,降低了整個電路的偏置誤差。

2.4校準電路

前面提到的各種設計電路有效的提高了ADC的線性性能和帶寬,但在TI Giga ADC,仍然集成了校準電路,用以進一步優(yōu)化ADC的性能。這部分校準電路包括27個高精度校準電壓,采用輪詢的方式依次輸入到輸入級的開關,并根據(jù)校準信號的輸出結果通過DAC調整預放大電路的偏置電流,達到校準修正的結果。

通過Figure5可以看到,輸入級的MUX開關,采保電路,輸入buffer的偏置誤差以及折疊電路的偏置誤差等包括在校準環(huán)路里,通過校準不僅僅提高了放大電路的線性,而且提高了系統(tǒng)在interleave模式下兩路ADC之間的一致性,改善了系統(tǒng)的雜散性能。

Giga ADC 介紹及雜散分析(下)

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉