當前位置:首頁 > 嵌入式 > 嵌入式硬件
[導讀]基于TIDSP數(shù)字信號處理器的通用信號處理板在聲納、雷達信號處理中已經(jīng)有著廣泛的應(yīng)用。但在一些實時性要求很高的場合,單板多DSP系統(tǒng)并不能完成高速的數(shù)據(jù)采集傳輸和大量的數(shù)據(jù)分析.

引言

基于TIDSP數(shù)字信號處理器的通用信號處理板在聲納、雷達信號處理中已經(jīng)有著廣泛的應(yīng)用。但在一些實時性要求很高的場合,單板多DSP系統(tǒng)并不能完成高速的數(shù)據(jù)采集傳輸和大量的數(shù)據(jù)分析處理工作,從而需要一個由信號采集板和信號處理板組成的多子板系統(tǒng)實現(xiàn)高速實時處理。借助多板多DSP并行處理技術(shù),能夠開放性地實現(xiàn)實時性強、精度高、動態(tài)范圍大和高數(shù)據(jù)吞吐量連接網(wǎng)絡(luò)的大規(guī)模并行處理系統(tǒng)。此時,數(shù)據(jù)的板間傳輸成為這些系統(tǒng)的設(shè)計瓶頸。

本文將介紹一種基于FPDP和VME雙總線的高速實時信號處理結(jié)構(gòu)可重組多子板系統(tǒng),并著重分析該系統(tǒng)核心子板——多DSP通用并行處理系統(tǒng)的硬件設(shè)計和原理框圖。

2、多子板系統(tǒng)總體設(shè)計

2.1 系統(tǒng)結(jié)構(gòu)分析

本系統(tǒng)是依托于標準VME機箱的高速實時信號處理結(jié)構(gòu)可重組多子板系統(tǒng)。它由上位機、下位機和VME機箱構(gòu)成。結(jié)構(gòu)框圖如圖1所示,它具有以下5個特點:

1.上位機為工控機,下位機由多塊數(shù)據(jù)采集板和DSP信號處理板組成。

2.DSP信號處理板采用一主三從的多DSP并行處理結(jié)構(gòu)。

3.每個下位機都通過標準的總線接口與上位機相連,上位機對下位機起主導作用,它可以通過公共總線下載或更新下位機上的DSP、FPGA等處理器程序,并且隨時監(jiān)控數(shù)據(jù)。

4.各子板之間數(shù)據(jù)通過專門的總線傳輸,不通過上位機統(tǒng)一分配調(diào)度。

5.系統(tǒng)結(jié)構(gòu)靈活多變,具有一定可重組性。系統(tǒng)各類子板都做了可擴展性設(shè)計。

系統(tǒng)結(jié)構(gòu)可重組性主要解決數(shù)據(jù)采集通道擴展和信號處理算法多樣性等各類問題。系統(tǒng)結(jié)構(gòu)可重組性表現(xiàn)為一方面數(shù)據(jù)采集可選用單通道結(jié)構(gòu)或者多通道結(jié)構(gòu),另一方面DSP子板可根據(jù)所實現(xiàn)的信號處理算法性能和各通道采集數(shù)據(jù)的數(shù)量及相關(guān)性而組合多板串行分步處理結(jié)構(gòu)或者多板獨立并行處理結(jié)構(gòu)。

在圖1中,系統(tǒng)除去DSP1X等板,保留DSP1Y、2……M板的結(jié)構(gòu)是多板串行分步處理結(jié)構(gòu):各通道數(shù)據(jù)通過數(shù)據(jù)傳輸總線依次傳送至DSP1Y板進行第一步處理,DSP1Y板然后將運算結(jié)果傳送至DSP2板進行下一步處理,以此類推直至完成各步處理得出最終結(jié)果。相反,系統(tǒng)除去DSP2……M板,保留DSP1X……1Y板的結(jié)構(gòu)便是多板獨立并行處理結(jié)構(gòu):各通道數(shù)據(jù)通過同一數(shù)據(jù)總線依次或者不同總線同時傳至各自相對應(yīng)的DSP1X……1Y板進行獨立并行處理。當然在數(shù)據(jù)量極大或者算法極其復雜的情況下,我們還可以將系統(tǒng)重組成串行和并行混合處理的結(jié)構(gòu)。

2.2 基于FPDP和VME總線的板間通訊設(shè)計

VME總線是軍用標準總線的主流類型,其技術(shù)成熟可靠,發(fā)展時間長,廣泛應(yīng)用于水下通信、雷達聲納、軟件無線電等領(lǐng)域?;贒SP程序下載和數(shù)據(jù)監(jiān)控的高穩(wěn)定性要求,我們在系統(tǒng)中采用VME總線實現(xiàn)上位機與下位機的板間通訊。下位機之間的通訊主要涉及到的是數(shù)據(jù)傳輸。VME總線對于此類傳輸就具有協(xié)議復雜,調(diào)試困難以及速度慢等弱點。因此我們采用目前通用的高速數(shù)據(jù)傳輸總線FPDP實現(xiàn)下位機之間通訊。

FPDP(front panel data port)前面板數(shù)據(jù)口協(xié)議是由VITA Standards Organization提出的?;谧钚〉却龝r間與精確傳輸速率,F(xiàn)PDP總線用于在兩個或多個VME總線子板之間提供高速數(shù)據(jù)傳輸,總線寬度為32bit,通過80線帶狀電纜連接。單一發(fā)送設(shè)備,沒有總線沖突,協(xié)議不包含地址和仲裁周期。數(shù)據(jù)傳輸速率完全由發(fā)送設(shè)備的時鐘決定,TTL時鐘strobe頻率最高為20MHz,±PECL data strobe的頻率最高為40MHz,因此數(shù)據(jù)傳輸最大帶寬為160MB/S。

基于FPDP總線的高速數(shù)據(jù)板間傳輸設(shè)計實現(xiàn)分為信號發(fā)送和信號接收兩部分。它包括FPDP主發(fā)送端(FPDP/TM)、發(fā)送端(FPDP/T)、FPDP主接收端(FPDP/RM)和接收端(FPDP/R)。FPDP總線可擴展為一個主發(fā)送端、多個發(fā)送端和一個主接收端、多個接收端的形式。這種可擴展傳輸結(jié)構(gòu)完全符合本文介紹的高速信號處理系統(tǒng)各種結(jié)構(gòu)下多種數(shù)據(jù)傳輸方式要求。如圖1所示,在系統(tǒng)中,子板通訊采用多條FPDP總線。數(shù)據(jù)采集板只設(shè)計有FPDP/TM接口,主要負責各通道數(shù)據(jù)采集發(fā)送。DSP信號處理板同時設(shè)計有FPDP/TM和FPDP/RM接口,配合系統(tǒng)結(jié)構(gòu)重組。系統(tǒng)處于多板獨立并行處理結(jié)構(gòu)時,DSP板啟動RM模塊,只做數(shù)據(jù)接收終端。系統(tǒng)處于多板串行結(jié)構(gòu)時,前板的FPDP/TM與后板的FPDP/RM相接,構(gòu)成獨立的FPDP總線,從而配合多個DSP板流水作業(yè)。在多通道或者多板并行處理結(jié)構(gòu)中,每個FPDP總線上,必須且只能設(shè)定一個主接收端和一個主發(fā)送端。

在系統(tǒng)中我們可以通過硬件編程、開關(guān)和軟件修改對FPDP/TM、FPDP/RM進行配置,實現(xiàn)各個系統(tǒng)結(jié)構(gòu)中數(shù)據(jù)實時多向傳輸。

3、并行處理系統(tǒng)板極設(shè)計

3.1 單板結(jié)構(gòu)及功能描述

本文介紹的高速實時信號處理系統(tǒng),其核心子板是多DSP并行處理機。它包括多DSP模塊、VME總線模塊和FPDP總線模塊。DSP選用TMS320C6701芯片,它是TI公司第一代采用VelociTITM高性能超長指令字結(jié)構(gòu)的高性能32位浮點型數(shù)字型號處理器,其運行時鐘頻率最高可達167MHz,峰值處理速度可以達到1GFLOPS和34MMACS的運算能力。

它主要包括C6701、SDRAM、FLASH、雙口RAM、數(shù)據(jù)地址緩沖以及DSP附屬的邏輯控制CPLD和實現(xiàn)兩類總線協(xié)議的FPGA芯片。

多DSP并行處理系統(tǒng)設(shè)計的核心是實現(xiàn)多DSP之間的通信控制及數(shù)據(jù)交換。DSP之間的互連結(jié)構(gòu)分為共享總線或共享存儲器的緊耦合連接方式和擁有各自獨立的數(shù)據(jù)存儲器而通過通信口相連的松耦合連接方式。緊耦合連接方式限制整個系統(tǒng)節(jié)點數(shù)目的規(guī)模,從而降低系統(tǒng)的擴展性。因此,我們采用松耦合連接方式,通過雙口RAM實現(xiàn)一主三從DSP之間的通信控制及數(shù)據(jù)交換。

VME和FPDP總線協(xié)議我們采用FPGA芯片實現(xiàn)。VME總線主要用于各個DSP的HPI口與上位機通訊。DSP通過VME總線采用HPI方式自動引導啟動,從上位機下載程序。上位機可以通過VME總線對板上數(shù)據(jù)進行實時監(jiān)控。FPDP總線連接至處理機上的主DSP,包括FPDP/TM和FPDP/RM兩個功能模塊。我們只需要更改和重新下載FPGA程序,便可以完成DSP處理機上的FPDP/TM和RM端口配置,以便對應(yīng)整個系統(tǒng)結(jié)構(gòu)重組。此外,用于FPDP通訊的FIFO也用FPGA實現(xiàn)。

處理機工作流程如下:系統(tǒng)上電后,4片C6701通過VME總線從上位機獲取運行程序,并存入各自片內(nèi)程序RAM,準備響應(yīng)。前板將需要處理的數(shù)據(jù)流通過FPDP總線發(fā)送至本板FPDP/RM端口的FIFO中并且發(fā)送中斷,主DSP響應(yīng)中斷后從FIFO中讀取數(shù)據(jù)并且完成分配,分別發(fā)送至三個從DSP的雙口RAM中。從DSP通過雙口RAM讀取數(shù)據(jù)并且進行并行處理,然后將處理完成的數(shù)據(jù)傳回雙口RAM。主DSP再將處理后的數(shù)據(jù)匯總并通過FPDP/TM端口發(fā)送至后板的FPDP/RM端口。如此循環(huán),直至所有數(shù)據(jù)都處理完畢。最后主DSP將結(jié)果反饋至上位機,等待下次命令。

處理機中,每片DSP都配有一個256 K×8 bit FLASH芯片。處理機也可以脫離上位機單板工作,只需將程序提前下載到FLASH中。

3.2 單板電源設(shè)計方案

并行處理機板上需要的電源分為5V、3.3V和1.8V三類。其中5V直接來自VME機箱背板。3.3V和1.8V電源通過板上轉(zhuǎn)換模塊提供。由于本系統(tǒng)中DSP、CPLD和FPGA比較多,功耗也相對較高,其供電系統(tǒng)品質(zhì)的好壞直接影響到整個處理機的工作穩(wěn)定性。另外,并行處理機上的DSP和FPGA對其I/O電路和內(nèi)核電路的供電順序也有一定的要求。

圖3給出了通用器件所要求的常見的3種電源啟動模式:Sequential Startup,即板上先提供1.8V電源然后再提供3.3V電源;Ratiometric Startup,即板上1.8V和3.3V電源同時以相同比率啟動并且同一時刻達到穩(wěn)定值;Simultaneous Startup,即板上1.8V和3.3V電源同時啟動。我們在實際設(shè)計中一定要考慮到器件對供電系統(tǒng)的不同要求,這對處理機的穩(wěn)定性具有極其重要的意義。



處理機上DSP和FPGA要求內(nèi)核電路和I/O電路的供電采用Sequential Startup模式。整板需要5A左右的1.8V和3.3V 電源系統(tǒng)。由此,我們采用TI公司的TPS54614和TPS54616芯片設(shè)計了處理機的電源轉(zhuǎn)換模塊。它有體積小,輸出電流大,性能穩(wěn)定等特點。電路原理如圖4所示。TPS54614采用5V輸入,能夠穩(wěn)定提供最大電流為6A的1.8V輸出,TPS54616同樣采用采用5V輸入,能夠穩(wěn)定提供最大電流為6A的3.3V輸出。此電源轉(zhuǎn)換模塊完全滿足整個信號處理機的供電量要求。

在設(shè)計中,根據(jù)TPS54610系列芯片的特性,我們將TPS54614的PWRGD連接至TPS54616的SS/ENA管腳。系統(tǒng)上電時,當TPS54614輸出電壓低于正常值的90%即1.6V時,PWRGD為低,抑制TPS54616啟動,當TPS54614輸出電壓大于1.6V時,PWRGD變高,啟動TPS54616;系統(tǒng)關(guān)閉時,TPS54614輸出降低到1.6V時,PWRGD變低,TPS54616才開始關(guān)閉。因此保證了DSP、FPGA內(nèi)核電壓供電先于I/O電壓,滿足了系統(tǒng)供電采用Sequential Startup模式的要求。

3.3 電路靈活配置

3.3.1 JTAG接口菊花鏈設(shè)計

TMS320C6701備有基于IEEE 1149.1標準的邊界掃描測試接口,從而為設(shè)計人員提供了一個實時的硬件仿真與調(diào)試環(huán)境。由于處理機是一個有4個DSP的多DSP系統(tǒng),我們將DSP的JTAG接口與14 pin Header間以菊花鏈方式互連。按照JTAG口驅(qū)動能力的要求,我們將關(guān)鍵信號通過一個緩沖器進行增強。

3.3.2 DSP中斷信號分配

多DSP系統(tǒng)不可避免會產(chǎn)生DSP中斷信號不夠用的問題。在處理機的設(shè)計過程中,我們分別將三個從DSP和FPDP/RM端口的中斷請求信號引至主DSP的附屬邏輯CPLD中進行統(tǒng)一分配。在CPLD中設(shè)定一個控制寄存器,外掛于主DSP的EMIF下。當主DSP接收到中斷請求后,它通過CPLD控制寄存器標示分析中斷信號的來源,從而正確響應(yīng)。

4、結(jié)論

采用混合總線模式的設(shè)計方法將大大提高數(shù)字信號處理系統(tǒng)的并行處理和數(shù)據(jù)傳輸能力。本文采用FPDP總線傳輸協(xié)議,實現(xiàn)了多總線子板間信號高速傳輸。最大為160MB/S的數(shù)據(jù)傳輸帶寬,完全滿足板間DSP芯片點對點通信的需求。同時,采用VME總線完成上下位機程序下載和數(shù)據(jù)監(jiān)控,提高了系統(tǒng)的穩(wěn)定性和可靠性。

本文設(shè)計的基于FPDP和VME雙總線的高速實時信號處理多子板系統(tǒng),目前在水下通信領(lǐng)域已取得成功應(yīng)用。詳細介紹的系統(tǒng)核心子板——多DSP通用并行處理機基于一主三從的多處理器結(jié)構(gòu),不僅可以多板多模式工作,也可以單板使用。目前在DSP大規(guī)模并行技術(shù)向片間發(fā)展的主流下,雖然文中的DSP器件以TMS320C6701為例,但系統(tǒng)結(jié)構(gòu)對其他DSP器件構(gòu)成的多DSP并行處理系統(tǒng)設(shè)計都具有一定的參考價值。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉