• 基于USB接口和DSP的飛機(jī)防滑剎車測(cè)試系統(tǒng)設(shè)計(jì)

    提出了以DSP為控制核心,采用USB通信設(shè)計(jì)的飛機(jī)防滑剎車測(cè)試系統(tǒng)。分析了飛機(jī)防滑剎車測(cè)試系統(tǒng)的組成,并介紹了測(cè)試系統(tǒng)主要硬件電路設(shè)計(jì)和系統(tǒng)上下位機(jī)軟件設(shè)計(jì)。

  • 基于AT89C51+DSP的雙CPU伺服運(yùn)動(dòng)控制器的研究

    采用單片機(jī)與DSP配合,系統(tǒng)的運(yùn)算和實(shí)時(shí)處理的能力大大增強(qiáng),可以適應(yīng)多坐標(biāo)軸、高速度、高精確度的數(shù)控系統(tǒng),實(shí)現(xiàn)單處理器系統(tǒng)難以實(shí)現(xiàn)的功能. 與由單處理器完成所有任務(wù)的情況相比,該方法允許較短的插補(bǔ)周期,實(shí)現(xiàn)更高的進(jìn)給和伺服控制精確度. 并經(jīng)實(shí)驗(yàn)證明該伺服運(yùn)動(dòng)控制器反向速度快、定位時(shí)間短、轉(zhuǎn)矩恒定,具有良好的線性調(diào)速特性及動(dòng)態(tài)性能.

  • 異步DSP核心設(shè)計(jì):更低功耗,更高性能

    目前,處理器性能的主要衡量指標(biāo)是時(shí)鐘頻率。絕大多數(shù)的集成電路 (IC) 設(shè)計(jì)都基于同步架構(gòu),而同步架構(gòu)都采用全球一致的時(shí)鐘。這種架構(gòu)非常普及,許多人認(rèn)為它也是數(shù)字電路設(shè)計(jì)的唯一途徑。然而,有一種截然不同的設(shè)計(jì)技術(shù)即將走上前臺(tái):異步設(shè)計(jì)。 這一新技術(shù)的主要推動(dòng)力來(lái)自硅技術(shù)的發(fā)展?fàn)顩r。隨著硅產(chǎn)品的結(jié)構(gòu)縮小到 90 納米以內(nèi),降低功耗就已成為首要事務(wù)。異步設(shè)計(jì)具有功耗低、電路更可靠等優(yōu)點(diǎn),被看作是滿足這一需要的途徑。 異步技術(shù)由于諸多原因曾經(jīng)備受冷落,其中最重要的是缺乏標(biāo)準(zhǔn)化的工具流。IC 設(shè)計(jì)團(tuán)隊(duì)面臨著巨大的壓力,包括快速地交付設(shè)備,使用高級(jí)編程語(yǔ)言和標(biāo)準(zhǔn)的事件驅(qū)動(dòng)架構(gòu) (EDA) 工具,幫助實(shí)施合成、定時(shí)和驗(yàn)證等任務(wù)。如果異步設(shè)計(jì)可以使用此類工具,那么可以預(yù)計(jì)將會(huì)出現(xiàn)更多采用異步邏輯組件的設(shè)備。

  • 基于DSP的磁流變阻尼器的控制方法

    以美國(guó)德州儀器公司推出的十六位定點(diǎn)通用數(shù)字信號(hào)處理芯片DSP為核心開(kāi)發(fā)出精確可控的電流控制器,電流可在0~1.5A范圍內(nèi)調(diào)節(jié),輸出電流精度高,線性度好,控制效果顯著。

  • 基于DSP Builder的14階FIR濾波器的設(shè)計(jì)

    數(shù)字濾波器在數(shù)字信號(hào)處理的各種應(yīng)用中發(fā)揮著十分重要的作用,他是通過(guò)對(duì)采樣數(shù)據(jù)信號(hào)進(jìn)行數(shù)學(xué)運(yùn)算處理來(lái)達(dá)到頻域?yàn)V波的目的。數(shù)字濾波器既可以是有限長(zhǎng)單脈沖響應(yīng)(FIR)濾波器也可以是無(wú)限長(zhǎng)單脈沖響應(yīng)(IIR)濾波器。在維納濾波器理論發(fā)明的早期,人們使用IIR濾波器,但現(xiàn)在更多是使用FIR濾波器。本文按照Matlab/Simulink/DSP Builder/QuartusⅡ流程,設(shè)計(jì)一個(gè)FIR濾波器。Altera DSP Builder是連接Simulink和QuartusⅡ開(kāi)發(fā)軟件的DSP開(kāi)發(fā)工具。在DSP Builder的無(wú)縫設(shè)計(jì)流程中,首先在Matlab軟件中進(jìn)行算法設(shè)計(jì),然后在Simulink軟件中進(jìn)行系統(tǒng)集成,最后將設(shè)計(jì)輸出為硬件描述語(yǔ)言(HDL)文件,以便在QuartusⅡ軟件中使用。

  • TMS320VC5402 I/o資源配置及與USB通信

    DSP(數(shù)字信號(hào)處理器)芯片TMS320VC5402具有高性能、低功耗、資源多等特點(diǎn),其獨(dú)特的6總線哈佛結(jié)構(gòu),使其能夠6條流水線同時(shí)工作,工作頻率達(dá)到100 MHz。具有2個(gè)緩沖串口BSP、8位并行EHPI(增強(qiáng)主機(jī)接口)、可編程的等待狀態(tài)發(fā)生器等,可以滿足數(shù)據(jù)處理控制的要求。 針對(duì)此應(yīng)用系統(tǒng)通信接口數(shù)據(jù)量大、對(duì)速度要求高、實(shí)時(shí)控制的特點(diǎn),本項(xiàng)目采用高速USB(通用串行總線)接口實(shí)現(xiàn)了高速的數(shù)據(jù)處理與傳輸。USB是一種新型接口技術(shù),是計(jì)算機(jī)和外圍設(shè)備接口通信的一種總線標(biāo)準(zhǔn)。它支持熱插拔、即插即用,連接簡(jiǎn)單。本文將介紹VC5402的GPI()(I/0)資源配置及CY7C68013與外設(shè)的從(Slave)FIF0接口方式。

  • 異步 DSP 核心設(shè)計(jì): 更低功耗,更高性能

    這一新技術(shù)的主要推動(dòng)力來(lái)自硅技術(shù)的發(fā)展?fàn)顩r。隨著硅產(chǎn)品的結(jié)構(gòu)縮小到 90 納米以內(nèi),降低功耗就已成為首要事務(wù)。異步設(shè)計(jì)具有功耗低、電路更可靠等優(yōu)點(diǎn),被看作是滿足這一需要的途徑。

  • 基于MSP430F413的新型智能水表的設(shè)計(jì)

    針對(duì)傳統(tǒng)水表落后產(chǎn)生的一系列問(wèn)題,國(guó)家建設(shè)部提出了城鎮(zhèn)居民住宅“三表出戶”的要求。所以目前國(guó)內(nèi)的很多水表生產(chǎn)廠家都在進(jìn)行產(chǎn)品新型化的探索,大部分采用單片機(jī)技術(shù),智能水表系統(tǒng)的實(shí)用性研究己成為當(dāng)前儀表行業(yè)的熱點(diǎn)之一。本文介紹的就是一種基于MSP430F413單片機(jī)的智能水表的設(shè)計(jì)。 本論文以智能IC卡水表系統(tǒng)為研究對(duì)象,重點(diǎn)探討了基于MSP430F413型超低功耗單片機(jī)在低功耗智能儀表上的應(yīng)用與開(kāi)發(fā)。論文首先提出利用IC卡技術(shù)智能水表系統(tǒng)的總體設(shè)計(jì)方案;設(shè)計(jì)了系統(tǒng)控制的硬件電路結(jié)構(gòu)和研究了軟件控制流程的實(shí)現(xiàn),采用軟硬件結(jié)合的方法,對(duì)系統(tǒng)的低功耗、抗干擾性設(shè)計(jì)及安全性問(wèn)題作了一定的分析與研究。

  • 以單一DSP控制多重三相逆變器

    多數(shù)新型電機(jī)控制方案均利用數(shù)字信號(hào)處理器(DSP)為電機(jī)的矢量控制提供所需的計(jì)算能力。由于矢量控制需要相當(dāng)強(qiáng)大的處理能力和外圍資源,因而迄今為止的設(shè)計(jì)經(jīng)驗(yàn)仍主張每臺(tái)逆變器和電機(jī)都擁有專門隸屬于自己的DSP控制器。

  • 一種基于DSP平臺(tái)的快速H.264編碼算法的設(shè)計(jì)

    視頻壓縮編碼標(biāo)準(zhǔn)H.264/AVC是由ISO/IEC和ITU-T組成的聯(lián)合視頻專家組(JVT)制定的,他引進(jìn)了一系列先進(jìn)的視頻編碼技術(shù),如4×4整數(shù)變換、空域內(nèi)的幀內(nèi)預(yù)測(cè),多參考幀與多種大小塊的幀間預(yù)測(cè)技術(shù)等,標(biāo)準(zhǔn)一經(jīng)推出,就以其高效的壓縮性能和友好的網(wǎng)絡(luò)特性受到業(yè)界的廣泛推崇。

  • 基于DSP多處理器實(shí)時(shí)開(kāi)發(fā)環(huán)境的設(shè)計(jì)

    本文通過(guò)研究提出了一種多處理器實(shí)時(shí)開(kāi)發(fā)環(huán)境的設(shè)計(jì)思想,它可以支持多種型號(hào)處理器的同時(shí)開(kāi)發(fā),使系統(tǒng)級(jí)開(kāi)發(fā)變得簡(jiǎn)單易行。

  • 基于DSP和模糊控制的尋線行走機(jī)器人設(shè)計(jì)與實(shí)現(xiàn)

    針對(duì)機(jī)器人比賽和電子設(shè)計(jì)競(jìng)賽中機(jī)器人尋線行走的普遍要求,提出了一種通用的尋線行走機(jī)器人的設(shè)計(jì)方法。機(jī)器人的核心控制器包括實(shí)現(xiàn)控制算法的DSP和用于擴(kuò)展功能實(shí)現(xiàn)的CPLD;對(duì)來(lái)自光電檢測(cè)傳感器的信號(hào)采用模糊控制規(guī)則進(jìn)行綜合,核心控制器根據(jù)模糊控制器輸出調(diào)整機(jī)器人的行走路線,最終實(shí)現(xiàn)機(jī)器人尋線行走。

  • 在采用FPGA設(shè)計(jì)DSP系統(tǒng)中仿真的重要性

    仿真是所有系統(tǒng)成功開(kāi)發(fā)的基礎(chǔ)。通過(guò)在不同條件、參數(shù)值和輸入情況下對(duì)系統(tǒng)進(jìn)行高級(jí)行為仿真,工程師可以迅速找到、分離并糾正系統(tǒng)的設(shè)計(jì)問(wèn)題。因?yàn)樵谶@一階段,比較容易區(qū)分設(shè)計(jì)問(wèn)題和編程問(wèn)題。通過(guò)在系統(tǒng)級(jí)工作,設(shè)計(jì)人員可以確定這一階段的問(wèn)題是來(lái)自設(shè)計(jì)缺陷,而不是編程問(wèn)題。此外,在信號(hào)處理系統(tǒng)設(shè)計(jì)中使用基于模型的方法大大縮短了“錯(cuò)誤診斷延遲”時(shí)間——從設(shè)計(jì)中出現(xiàn)錯(cuò)誤到發(fā)現(xiàn)錯(cuò)誤并分離錯(cuò)誤的時(shí)間。

  • 32位DSP兩級(jí)cache的結(jié)構(gòu)設(shè)計(jì)

    采用自頂向下的流程設(shè)計(jì)了一款32位DSP的cache。該cache采用兩級(jí)結(jié)構(gòu),第一級(jí)采用哈佛結(jié)構(gòu),第二級(jí)采用普林斯頓結(jié)構(gòu)。本文詳細(xì)論述了該cache的結(jié)構(gòu)設(shè)計(jì)及采用的算法。

  • 基于DSP CCS2.2實(shí)現(xiàn)指紋識(shí)別預(yù)處理系統(tǒng)

    介紹了采用TI公司的高速DSP芯片TMS320VC5402的指紋識(shí)別系統(tǒng)的預(yù)處理算法和編程實(shí)現(xiàn).算法實(shí)現(xiàn)采用的DSP集成開(kāi)發(fā)環(huán)境(IDE)為CCS 2.2.通過(guò)采用極值濾波、平滑濾波、拉普拉斯銳化、二值化等對(duì)指紋圖像進(jìn)行預(yù)處理,取得了良好的試驗(yàn)結(jié)果.

發(fā)布文章