當前位置:首頁 > 模擬 > 模擬
[導讀]引言對正弦波進行精確數(shù)字化的能力是高分辨率 A 至 D 轉換器保真度的一項敏感度測試。該測試需要一個具接近 1ppm 殘留失真分量的正弦波發(fā)生器。此外,還需要一個基于計算機的 A 至 D 輸出監(jiān)視器,用于讀取和顯示轉換

引言

對正弦波進行精確數(shù)字化的能力是高分辨率 A 至 D 轉換器保真度的一項敏感度測試。該測試需要一個具接近 1ppm 殘留失真分量的正弦波發(fā)生器。此外,還需要一個基于計算機的 A 至 D 輸出監(jiān)視器,用于讀取和顯示轉換器輸出頻譜成分。若想以合理的成本和復雜程度來實施此項測試,就必需進行其元件的設計并在使用之前完成性能驗證。

概要

圖 1 給出了系統(tǒng)的示意圖。一個低失真振蕩器通過一個放大器來驅動 A 至 D。A 至 D 輸出接口對轉換器輸出進行格式化,并與負責執(zhí)行頻譜分析軟件和顯示結果數(shù)據(jù)的計算機進行通信。

圖 1:A 至 D 頻譜純度測試系統(tǒng)方框圖。假設采用了一個無失真的振蕩器,由計算機負責顯示因放大器和 A 至 D 失真產生的富里葉 (Fourier) 分量

振蕩器電路

振蕩器是系統(tǒng)中難度最大的電路設計部分。為了對 18 位 A 至 D 進行有意義的測試,振蕩器的不純度必須超低,而且這些特性必須采用獨立的方法加以驗證。圖 2 基本上是一款“全反相”2kHz 維氏 (Wien) 電橋設計 (A1-A2),其在哈佛大學 Winfield Hill 所做研究工作的基礎上進行。原始設計的 J-FET 增益控制被一個 LED 驅動的 CdS 光電管隔離器所替代,從而消除了由 J-FET 電導率調制引起的誤差,同時也就不必為最大限度地減少這些誤差而進行微調。限帶的 A3 負責接收 A2 輸出和 DC 失調偏置,并通過一個 2.6kHz 濾波器提供輸出以驅動 A 至 D 輸入放大器。用于 A1-A2 振蕩器的自動增益控制 (AGC) 信號由負責給整流器 A5-A6 饋電的 AC 耦合 A4 從電路輸出 (“AGC 檢測”) 獲取。A6 的 DC 輸出表示電路輸出正弦波的 AC 幅度。利用終接至 AGC 放大器 A7 的電流求和電阻器來使該數(shù)值與 LT®1029 基準保持平衡。驅動 Q1 的 A7 通過設定 LED 電流 (因而還包括 CdS 光電管電阻) 來閉合增益控制環(huán)路,從而穩(wěn)定振蕩器輸出的幅度。盡管這會衰減 A3 和輸出濾波器的帶限響應,但從電路的輸出獲得增益控制反饋信息可保持輸出幅度。另外,它還對 A7 環(huán)路閉合動態(tài)特性提出了要求。確切地說,A3 的頻帶限制與輸出濾波器 A6 的滯后及紋波抑制組件 (在 Q1 的基極中) 相組合,可產生顯著的相位延遲。A7 上的一個 1μF 主極點和一個 RC 零點一起提供了該延遲,從而實現(xiàn)了穩(wěn)定的環(huán)路補償。這種方法用簡單的 RC 滾降濾波器取代了嚴密調諧的高階輸出濾波器,從而在保持輸出幅度的同時最大限度地降低了失真1。

圖 2:維氏電橋 (Wien Bridge) 振蕩器在信號通路中采用反相放大器,可實現(xiàn) 3ppm 失真。LED 光電管取代了常用的 J-FET 作為增益控制器,從而消除了電導率調制所引起的失真。與 A3 相關的濾波衰減通過在電路輸出端檢測 AGC 反饋來補償。DC 失調施加偏壓使輸出進入 A 至 D 輸入放大器范圍

從 LED 偏置中消除與振蕩器有關的分量是保持低失真的關鍵。任何此類殘留噪聲都將調整振蕩器的幅度,因而引入不純分量。對帶限 AGC 信號正向通路實施了很好的濾波,而且 Q1 基極中的大 RC 常數(shù)提供了最終的陡峭滾降。如圖 3 (Q1 的發(fā)射極電流) 所示,振蕩器相關紋波在 10mA 的總電流中約為 1nA (小于 0.1ppm)。

圖 3:振蕩器 (掃跡 A) 相關的殘留噪聲 (掃跡 B),在 Q1 發(fā)射極噪聲中僅依稀可看到 (≈ 1nA,大約為 LED 電流的 0.1ppm)。利用大量 AGC 信號通路濾波獲得的特性可避免調制分量影響光電管響應

振蕩器僅通過一次微調便實現(xiàn)了其性能。該調整 (其確定了 AGC 捕獲范圍的中心) 是按照原理圖注釋設定的。

驗證振蕩器失真

驗證振蕩器失真需要采用精細的測量方法。嘗試采用傳統(tǒng)失真分析儀 (甚至是高級型分析儀) 來測量失真會遭遇局限性。圖 4 示出了振蕩器輸出 (掃跡 A) 及其在分析儀輸出端上的殘留失真指示 (掃跡 B)。在分析儀的噪聲層和不確定性層中,振蕩器相關動作的輪廓描繪是模糊不清的。測試中使用的 HP-339A 規(guī)定了一個 18ppm 的最小可測量失真;這張照片在拍攝時儀器的指示為 9ppm。這超過了規(guī)格指標而且非??梢桑驗樵跍y量失真時如果達到或接近了設備的性能極限,就會帶來顯著的不確定性2。假如要對振蕩器失真進行有意義的測量,則必需使用不確定層非常低和精致的專業(yè)型分析儀。規(guī)定了 2.5ppm 總諧波失真 + 噪聲 (THD + N) 限值 (典型值為 1.5ppm) 的 Audio Precision 2722 提供了圖 5 中的數(shù)據(jù)。如該圖所示,總諧波失真 (THD) 為 -110dB,即大約 3ppm。圖 6 (使用相同的儀器獲得) 示出的 THD + N 為 105dB,即 5.8ppm 左右。在圖 7 所示的最終測試中,分析儀確定了振蕩器的頻譜成分 (以三次諧波為主導,位于 -112dB,即大約 2.4ppm)。這些測量值使人們有信心把該振蕩器應用于 A 至 D 保真度特性分析中。

圖 4:HP-339A 失真分析儀在其分辨率限值范圍外工作會給出有誤導的失真指示 (掃跡 B)。分析儀輸出包含了振蕩器和儀器特征的不確定組合,不可作為判定依據(jù)。掃跡 A 是振蕩器輸出

圖 5:Audio Precision 2722 分析儀測得的振蕩器 THD 為 -110dB,大約 3ppm

圖 6:AP-2722 分析儀測得的振蕩器 THD + N ≈ -105dB,大約 5.8ppm

圖 7:AP-2722 頻譜輸出顯示三次諧波的峰值為 -112.5dB,≈ 2.4ppm

A 至 D 測試

A 至 D 測試通過其輸入放大器將振蕩器輸出發(fā)送至 A 至 D。此項測試測量了由輸入放大器或 A 至 D 組合所產生的失真分量。A 至 D 輸出由計算機來檢查,計算機將以定量的方式把頻譜誤差分量指示在圖 8 的顯示界面中3。該顯示界面包含了時域信息 (其示出了集中于轉換器工作范圍內的偏置正弦波)、一個富里葉變換 (指示了頻譜誤差分量) 和詳細的表列讀數(shù)。被測試的 LTC®2379 18 位 A 至 D / LT6350 放大器組合產生了 -111dB (約 2.8ppm) 的二次諧波失真,而較高頻率的諧波則遠低于該水平。這表明 A 至 D 及其輸入放大器處于正確的運作狀態(tài)和規(guī)格范圍之內。要想實現(xiàn)振蕩器與放大器或 A 至 D之間的諧波消除,則必需測試多個放大器或 A 至 D 樣本以增加測量的置信度4。

圖 8:圖 1 所示測試系統(tǒng)的部分顯示包括時域信息、富里葉頻譜曲線圖以及詳細的表列讀數(shù) (針對由 LT6350 放大器驅動的 LTC2379 18 位 A 至 D)

注 1:這有點類似于使食物通過絞肉機來制作濃湯。

注 2:在或接近設備性能限制的條件下進行的失真測量充滿了令人不快的驚訝。請參見《LTC 應用指南 43》 “橋式電路” (Bridge Circuit) 附錄 D “了解失真測量”(Understanding Distortion Measurements),作者是 Audio Precision 公司的 Bruce Hofer。

注 3:凌力爾特提供了測試所必需的輸入放大器 至 A 至 D 轉換器、計算機數(shù)據(jù)采集和時鐘電路板。軟件代碼可登錄 www.linear.com.cn 網(wǎng)站下載。詳情請見附錄 A “用于A 至 D 保真度測試的工具”。

注 4:相關注釋請仔細研究正文部分中的“驗證振蕩器失真”和腳注 2。

附錄 A

用于 A 至 D 保真度測試的工具

可提供用于實施正文所述之 A 至 D 測試的電路板。表 1 列出了電路板功能及其產品型號。另外,計算機軟件 PScopeTM 也可從凌力爾特獲取或訪問 www.linear.com.cn 網(wǎng)站下載。

表 1

* 可以使用任何能夠驅動 50Ω 負載的穩(wěn)定、低相位噪聲 3.3V 時鐘。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉