當(dāng)前位置:首頁(yè) > 電源 > 功率器件
[導(dǎo)讀] 1 引 言隨 著 MOS 器件應(yīng)用的廣泛, 基于CMOS 電路結(jié)構(gòu)的電流反饋運(yùn)算放大器 (CFOA)由于理論上有無限制的轉(zhuǎn)換速率和閉環(huán)工作時(shí)具有與增益無關(guān)的帶寬,在 高速A/D 和D/A

1 引 言

隨 著 MOS 器件應(yīng)用的廣泛, 基于CMOS 電路結(jié)構(gòu)的電流反饋運(yùn)算放大器 (CFOA)由于理論上有無限制的轉(zhuǎn)換速率和閉環(huán)工作時(shí)具有與增益無關(guān)的帶寬,在 高速A/D 和D/A 轉(zhuǎn)換器,高速數(shù)據(jù)采集、傳感器、電源、視頻、射頻等高頻高速電 子系統(tǒng)中被廣泛采用。CFOA 與傳統(tǒng)的VFOA 相比具有許多優(yōu)點(diǎn),最主要的特 點(diǎn)是CFOA 的輸入級(jí)拋棄了差動(dòng)電路,而采用互補(bǔ)跟隨電路,提高了輸入級(jí)轉(zhuǎn)換速 率;同時(shí)其閉環(huán)帶寬與增益無關(guān),不存在增益帶寬積的限制。但電源電壓大部分都 大于±1.5V,功耗比較大,但這一狀況會(huì)隨著CMOS 工藝的成熟而得到解決,盡可 能地降低電路的電壓和功耗是模擬集成電路的發(fā)展趨勢(shì),已經(jīng)受到國(guó)際上的廣泛關(guān)注。

文獻(xiàn)中電路單位增益帶寬比較低,又由于電壓模式的帶寬增益積為常數(shù), 因此在處理高頻信號(hào)時(shí),增益會(huì)變的很低。另外文獻(xiàn)中轉(zhuǎn)換速率也很低,不 適合處理高速信號(hào)。中電路達(dá)到了很小的功耗,但其它的性能還有改善的余地。 本文在它們的基礎(chǔ)上,設(shè)計(jì)了一種基于改進(jìn)型第二代電流傳輸器(Second-generation Current Conveyor,簡(jiǎn)稱CCⅡ)的CFOA.經(jīng)過仿真可知,大部分的指標(biāo)都有了一定 程度的改進(jìn)。

2 放大器的設(shè)計(jì)

圖 1 為本文設(shè)計(jì)的電路結(jié)構(gòu),M1、M2、M3、M4 構(gòu)成輸入緩沖級(jí)。Z 是高阻抗輸出端。假設(shè)在反相端產(chǎn)生電流I1-I2=In,則此電流通過由M1—M8、M28—M29 組 成的電流鏡傳輸?shù)絑 端,然后轉(zhuǎn)換成電壓進(jìn)行下一級(jí)放大。設(shè)開環(huán)跨阻增益為Z ( jf ), 則:

并在電路中采用MOS 管M15—M18 實(shí)現(xiàn)的串聯(lián)電阻與電容C1 和M19 形成的電容 進(jìn)行相位補(bǔ)償,并消除C1 和M19 電容帶來的低頻零點(diǎn) 。顯然,從反向輸入 端到Z 端,中間線性傳輸?shù)奈锢砹渴请娏?,而且電流變化的幅值在理論上沒有限制, 這就是CFOA 能獲得高速特性的根本原因。

3 電路分析

3.1 輸入級(jí)分析

在圖 1 電路中,由M1—M8 和M28-M29 組成電路的輸入級(jí),V+端是同相輸入 端,具有高輸入阻抗。V -端是反相輸入端,具有低輸入阻抗,同時(shí)M3、M4 的推挽 結(jié)構(gòu)也形成低輸出阻抗,便于信號(hào)電流的流進(jìn)或流出。M1、M2、M3 和M4 的互補(bǔ) 結(jié)構(gòu)迫使V -跟隨V+ ,反相輸入端的電流In=I1-I2 ,其中I1、I2 分別為M3、M4 MOS 管的源極電流,當(dāng)反相輸入端信號(hào)電流為零時(shí),I1=I2 。M20-M27 輸入級(jí)提供1μA 的偏置電流。當(dāng)同相端V+輸入正極性信號(hào)時(shí),反相端的輸出電流由M3 提供;當(dāng) 同相端V+輸入負(fù)極性信號(hào)時(shí),反相端的輸入電流由M4 管提供。全電路的差??鐚?dǎo)增益為:

共??鐚?dǎo)增益為:

由公式(2)和(3)可得到:

在等式中g(shù)m 代表M3 的跨導(dǎo), R 為M1 的源極電阻, r 代表M3 源極電阻。

3.2 輸出級(jí)分析

CFOA 的電平轉(zhuǎn)移級(jí)中,M11、M12 完成電平轉(zhuǎn)移的功能,還有一個(gè)作用是隔離 輸出級(jí)與中間放大級(jí),避免輸出級(jí)影響中間放大級(jí)。CMOS 互補(bǔ)放大器作為輸出級(jí), 具有較大的電壓增益,但有一個(gè)缺點(diǎn),輸出阻抗太大,導(dǎo)致帶負(fù)載能力較差。本文設(shè)計(jì)的輸出級(jí)采用電阻反饋,用來減小輸出電阻,改善其驅(qū)動(dòng)性能。

輸出級(jí)的電壓增益為:

互補(bǔ)輸出級(jí)經(jīng)過密勒等效后的小信號(hào)電路如圖2 所示.等效后的小信號(hào)電路如圖3 所示.設(shè)K=Vout13 Vout11 ,根據(jù)密勒定理,可得到:

求輸出阻抗時(shí)是在輸入短路的情況下求得所以很顯然, K 值無窮大, 由 R2 = R × K/ K?1得R2 = R ,故輸出阻抗R0 = rds13 // rds14 // R。可見,加反饋后的輸出電阻減小 了很多,仿真結(jié)果也證明了這一點(diǎn)。

3.3 電路補(bǔ)償原理分析

電容Cz 和電阻Rz 串聯(lián)可進(jìn)行電路的補(bǔ)償。其補(bǔ)償原理如圖3 所示。由上圖列 出節(jié)點(diǎn)方程并解方程,如果1 gm2 << R1, R2,兩個(gè)極點(diǎn)離的較遠(yuǎn),最后解出零點(diǎn)為:

由(10)可以看出,當(dāng)RZ = 1/gm2 ,零點(diǎn)消去,提高了電路的穩(wěn)定性。如果RZ 稍大于1/gm2 ,則零點(diǎn)從S 平面的右半平面移到左半平面,也可提高電路的穩(wěn)定性。

由于在微電子工藝中電阻或者電容過大會(huì)占用很大的面積,故圖3 中的電阻RZ 用M15-M16 來實(shí)現(xiàn),M19 起到電容的作用。靜態(tài)時(shí),M15,M16 中無電流.根據(jù)小 信號(hào)等效電路,可求得漏源端的等效電阻為RZ = 1/gm,這里gm 為M15-M16 的跨 導(dǎo),因此,當(dāng)M15-M16 的跨導(dǎo)設(shè)計(jì)合理時(shí)可以起到電阻RZ 的作用。另外MOS 管M17-M18 也起到和M15-M16 相同的作用,M19 和M17-M18 對(duì)電路進(jìn)行補(bǔ)償。

4.原理分析與仿真

4.1 開環(huán)仿真結(jié)果

在圖 1 中,M9、M10 構(gòu)成運(yùn)放第二增益級(jí),其小信號(hào)增益為:

在PSPICE 下利用BSM3 0.5um CMOS 工藝參數(shù),負(fù)載電容CL=20pF,得到該電路的差模 開環(huán)增益為84.2dB,單位增益帶寬為676MHz,相位裕度為60°, 顯然電路滿足穩(wěn)定性要求。 而文獻(xiàn)中的單位增益帶寬分別為1MHZ、2.2MHZ,文獻(xiàn)中的CFOA 單位增益帶 寬為79.5MHZ,可看出電路單位增益帶寬有極大的提高。

4.2 閉環(huán)特性分析與仿真

本文所設(shè)計(jì)的 CFOA 電路的交流小信號(hào)等效電路如圖4。第一級(jí)是輸入級(jí),采用CCⅡ-。 第二級(jí)采用傳統(tǒng)的兩級(jí)運(yùn)算放大器。

對(duì)圖 4 小信號(hào)等效電路進(jìn)行分析,CT 和RZ 是內(nèi)部電容電阻;RF 是反饋電阻。則:閉環(huán)電壓增益的近似函數(shù)式為:

得閉環(huán)-3dB帶寬為:

式(9)和式(10)表明,對(duì)于CFOA,其閉環(huán)帶寬可用反饋電阻Rf 調(diào)節(jié),閉環(huán)增益則可用 R1 進(jìn)行控制,實(shí)現(xiàn)增益與帶寬的獨(dú)立控制。

用 PSPICE 分析其反向閉環(huán)特性,當(dāng)固定R f =100K, R1分別取1K、10K、100K時(shí),反 相閉環(huán)增益分別為40dB、20dB、 0dB,同相閉環(huán)增益與此類似。說明電路設(shè)計(jì)合理,體 現(xiàn)了CFOA 增益設(shè)置關(guān)系不大的帶寬。

5 結(jié)論

本文的低壓低功耗 CFOA,它在只需1V 電源電壓情況下,僅產(chǎn)生0.7mW 功耗,84.2dB 的開環(huán)增益,62°的相位裕度,高達(dá)138dB 的共模抑制比, -0.85V~0.97V 的輸出電壓范圍。 由于電源電壓只有1V,使得功耗較小,這對(duì)便攜式設(shè)備和需要較小電壓的場(chǎng)合的利用極為 有利。本文作者創(chuàng)新點(diǎn):利用MOS 管實(shí)現(xiàn)串聯(lián)電阻以消除補(bǔ)償電容帶來的低頻零點(diǎn),通過高 輸出阻抗鏡像電流鏡增大了電路的增益,并用共源共柵電流源為電路提供偏置電流以減小電 源電壓的變化對(duì)偏置電流影響。本文的參數(shù)以及與文獻(xiàn)的比較如下表中所示。

發(fā)布者:小宇

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉