我們現(xiàn)在討論能源,特別是能源在開源方面的未來。為了減緩和阻止氣候變化,我們必須將排放量減少到零。為此,我們需要徹底改變我們的能源系統(tǒng),只生產(chǎn)可持續(xù)和可再生能源。我們還需要可持續(xù)且更可靠的電網(wǎng),能夠以最佳方式結(jié)合不同的可再生能源。
從 EPC 的角度來看,我們將通過我們的 GaN 器件推出全新一代技術(shù)。所以那將是一個令人興奮的發(fā)布。我們顯然也期待與我們在汽車行業(yè)以及最近真正起飛的太陽能行業(yè)的合作伙伴公司討論我們在 GaN 方面的所有新技術(shù)。因此,電源解決方案的設(shè)計人員面臨挑戰(zhàn),并且越來越多地轉(zhuǎn)向所謂的寬帶隙技術(shù)來克服硅的局限性。其中之一是 GaN,您非常了解它。所以正如你在一篇文章中所說,GaN技術(shù)有一個硅無法比擬的優(yōu)勢。這就是將功率器件與信號和數(shù)字器件集成的能力。那么你在哪里押注 GaN,為什么?
當(dāng)我們展望未來 100 年的經(jīng)濟和工業(yè)發(fā)展方向時,電力電子將成為未來的關(guān)鍵部分。如果你看看過去 100 年左右,我們的工業(yè)化是基于化石燃料,無論是我們的家庭、工業(yè)、工作場所還是流動性,它們都基于碳基燃料:石油、天然氣煤……在過去 100 年中顯著的碳排放。
我們討論電源管理方面的下一個挑戰(zhàn),例如效率、熱管理和工程中重要的特性。那么最關(guān)鍵的是什么,你對市場有什么建議? 歸根結(jié)底,實際上一切都與效率有關(guān),不是嗎?正確的?無論您是在談?wù)撛O(shè)備本身的效率,還是正在充電的設(shè)備,您提出的所有這些問題、熱管理、密度,所有這些都真正下降,無法實現(xiàn)或無法改進更高的效率。我相信,我讀過美國家庭平均擁有大約 25 臺聯(lián)網(wǎng)設(shè)備。所以這些是設(shè)備,每一個都需要充電,其中很多是每天充電,有些是永久充電。因此,僅在美國,更不用說歐洲、中國等地的數(shù)億家庭,這就是一個巨大的負擔(dān)。所以它真的需要被驅(qū)動,對嗎?它需要在效率方面得到全方位的推動。
垂直結(jié)構(gòu)通常被認為有利于高電壓、高功率器件,因為它便于電流擴散和熱管理,并允許在不增大芯片尺寸的情況下實現(xiàn)高電壓幾乎所有商用的MV/HV Si和SiC功率器件都是基于垂直結(jié)構(gòu)此外,與GaN-on-Si外延相比,GaN-on-GaN同質(zhì)外延層具有更低的位錯密度,(VON)是由GaN的大能帶隙引起的。先進的sbd是非常可取的,因為它們結(jié)合了肖特基樣正向特性(具有低VON)和pn樣反向特性(峰值電場從表面移到半導(dǎo)體中)。
垂直氮化鎵設(shè)備能夠達到更高的頻率和操作在更高的電壓,這應(yīng)該導(dǎo)致新一代更有效的電力設(shè)備,現(xiàn)在的一些挑戰(zhàn),具體來說,你正在工作與橫向氮化鎵相比,有什么制造問題,問題降低成本?我想這很重要。所以,我們談?wù)摰氖菍W(xué)術(shù)上的垂直氮化鎵,還是我們可以在市場上找到解決方案?
為什么我們需要垂直的氮化鎵?因此,由于輸出電容較小,應(yīng)用中的開關(guān)損耗非常小,與橫向氮化鎵設(shè)備相比,保持這些通過均勻材料的最佳傳輸,而沒有額外的層定向到封裝,并將框架從設(shè)備的頂部和底部離開。
為可再生能源提供動力以創(chuàng)造更美好的明天,因此,不僅是 GaN 和 SiC 等寬帶隙半導(dǎo)體,還有圍繞電力電子、智能電網(wǎng)、微電網(wǎng)、宏觀電網(wǎng)、人工智能的多種技術(shù),都將支持這種擴展。我們作為技術(shù)社區(qū)和工程師的責(zé)任是采取行動做某事,所以我們每個人都應(yīng)該邁出第一步。因此,我們不僅對個人負責(zé),而且對組織負責(zé)。那么阻礙零碳和低碳能源更廣泛部署的關(guān)鍵技術(shù)瓶頸是什么?你認為生產(chǎn)太陽能電池板等的所謂稀有材料的競爭?
道路運輸?shù)碾姎饣瘜τ趯崿F(xiàn)歐盟的脫碳和氣候變化目標(biāo)至關(guān)重要。對碳化硅襯底的需求經(jīng)歷了巨大的增長,法國絕緣體上硅 (SOI) 晶圓供應(yīng)商 Soitec 開發(fā)了 SmartSiC 技術(shù),以加速 SiC 在電動汽車中的采用。
固態(tài)開關(guān)和機電繼電器有助于通過電流管理所有設(shè)備的電源。盡管無處不在,但傳統(tǒng)的開關(guān)和繼電器仍存在主要缺點,包括能量損失、成本、重量、尺寸、性能和可靠性。這些固有限制影響了設(shè)計和部署下一代 5G 網(wǎng)絡(luò)以及一切電氣化的能力——快速過渡到電動汽車、可持續(xù)能源和更智能的電網(wǎng)。
到目前為止,我們已經(jīng)涉足能源和電力市場數(shù)十年,我們的目標(biāo)確實是為專注于電力轉(zhuǎn)換和儲能應(yīng)用的客戶提供支持,例如交通運輸、可再生能源、重型工業(yè)機械。我們一直在全球范圍內(nèi)這樣做。所以我想說大約十年前,我們看到對更高效的電源解決方案和高功率密度以及小尺寸的需求在增加。所以這就是為什么我們一直專注于寬帶半導(dǎo)體的早期階段。我指的是氮化鎵或 GaN 和碳化硅。這幫助我們走在了今天采用這些技術(shù)的前沿。
SiC 和 GaN 都可以為創(chuàng)建下一代智能電網(wǎng)做出貢獻,以解決能源問題,尤其是在電動汽車方面。那么等待我們的未來是什么?但特別是,從長遠來看,您認為基于 SiC 的功率器件應(yīng)該如何發(fā)展才能滿足下一個更嚴格的行業(yè)要求?
今天,我們就來聊一聊碳化硅,下一波SiC制造,供應(yīng)鏈和成本。SiC 行業(yè)在許多市場都在增長。電動汽車市場正準備轉(zhuǎn)向 SiC 逆變器,正如特斯拉已經(jīng)做的那樣。作為戰(zhàn)略合作的一部分,梅賽德斯-奔馳已將 onsemi SiC 技術(shù)用于牽引逆變器。因此,SiC 器件的范圍得到了廣泛認可,并提供了傳統(tǒng) IGBT 的寬帶隙替代品。
我們一直在跟蹤 POE 世界中的一個有趣趨勢,對于任何支付電費的人……或認識支付電費的人來說,這應(yīng)該不足為奇:人們越來越關(guān)注產(chǎn)品生命周期內(nèi)的總功耗。 總擁有成本通常被認為是 CAPEX(資本支出......或購買價格)和 OPEX(運營支出......或運行成本)的總和。設(shè)計師和硬件開發(fā)經(jīng)理歷來更關(guān)注 CAPEX 而不是 OPEX,但現(xiàn)在開始將轉(zhuǎn)向總擁有成本視為判斷解決方案的正確指標(biāo)。這是來自實際需要付費購買和運行此類設(shè)備的最終用戶。
許多照明應(yīng)用需要提供直流控制、高效率、脈寬調(diào)制 (PWM) 調(diào)光、電壓保護和設(shè)計簡單性的 LED 背光驅(qū)動器解決方案。驅(qū)動器拓撲主要分為三大類:線性穩(wěn)壓器、電荷泵和開關(guān)。DC/DC 轉(zhuǎn)換器基于一系列保證高效率的拓撲結(jié)構(gòu),由于其靈活性,已在各種 LED 應(yīng)用中找到了設(shè)計空間。它們接受寬范圍的輸入電壓,從而可以達到高功率密度。