在電力電子技術(shù)的快速發(fā)展下,斬波穩(wěn)壓器作為一種重要的電力調(diào)節(jié)設(shè)備,以其高效、穩(wěn)定、可靠的性能,在工業(yè)自動化、通信、數(shù)據(jù)中心、消費(fèi)電子及醫(yī)療設(shè)備等領(lǐng)域得到了廣泛應(yīng)用。
工業(yè)峰會2024?于2024年10月29日在中國深圳圓滿落幕,大會展出了150多個(gè)應(yīng)用解決方案,舉辦了28場關(guān)于電機(jī)控制、電源和能源、自動化的會議,并展示了ST的技術(shù)產(chǎn)品。針對那些無法親臨峰會現(xiàn)場的人,ST還組織了40多場獨(dú)特的網(wǎng)絡(luò)直播,以觸達(dá)更廣泛的觀眾,使更多的人能夠觀看峰會。正如與會者將看到的那樣,因?yàn)楸緦梅鍟劢怪悄苣茉?,ST必須讓工業(yè)峰會2024觸達(dá)更多的工程師和決策者。氣候變化對電力電子產(chǎn)品提出更高的能效要求,同時(shí),數(shù)據(jù)中心、可再生能源,以及供暖和制冷的新消費(fèi)趨勢也需要?jiǎng)?chuàng)新技術(shù)。
DC-DC轉(zhuǎn)換器是一種將直流電能從一個(gè)電壓水平轉(zhuǎn)換為另一個(gè)電壓水平的設(shè)備,在電力電子、通信、工業(yè)控制等領(lǐng)域具有廣泛應(yīng)用。
在現(xiàn)代電力電子系統(tǒng)中,同步整流BUCK電路因其高效率、低損耗的特點(diǎn)而被廣泛應(yīng)用。然而,在實(shí)際應(yīng)用中,同步整流BUCK電路的輸出紋波過大且與開關(guān)重合嚴(yán)重的問題,一直是工程師們需要面對和解決的難題。
幾十年來,硅(Si)一直是半導(dǎo)體行業(yè)的主要材料——從微處理器到分立功率器件,無處不在。然而,隨著汽車和可再生能源等領(lǐng)域?qū)ΜF(xiàn)代電力需求應(yīng)用的發(fā)展,硅的局限性變得越來越明顯。
雙管正激(Dual-Active Bridge,簡稱DAB)是一種雙向功率轉(zhuǎn)換技術(shù),廣泛應(yīng)用于電力電子領(lǐng)域,如無線能量傳輸、電池充電器、電動汽車充電器等。
在電力電子系統(tǒng)中,開關(guān)技術(shù)是決定系統(tǒng)效率、損耗和性能的關(guān)鍵因素之一。隨著科技的進(jìn)步,各種先進(jìn)的開關(guān)技術(shù)不斷涌現(xiàn),為設(shè)計(jì)高效、低損耗的電力電子設(shè)備提供了更多選擇。然而,面對眾多技術(shù)選項(xiàng),如何選擇合適的開關(guān)技術(shù)以降低損耗,成為工程師們面臨的一大挑戰(zhàn)。本文將深入探討開關(guān)技術(shù)的基本原理、損耗來源、技術(shù)類型以及選擇策略,旨在為工程師提供實(shí)用的指導(dǎo)。
隨著電力電子技術(shù)的迅速發(fā)展,各種電力電子裝置在電力系統(tǒng)、工業(yè)、信息、交通、家庭等眾多領(lǐng)域中的應(yīng)用日益廣泛。
雙向DC/DC轉(zhuǎn)換器作為電力電子技術(shù)的重要組成部分,能夠在兩個(gè)不同電壓級別的直流系統(tǒng)之間實(shí)現(xiàn)能量的雙向傳輸。這種轉(zhuǎn)換器不僅廣泛應(yīng)用于電動車、混合動力車、太陽能逆變器和風(fēng)力發(fā)電系統(tǒng)等,還在儲能系統(tǒng)和智能電網(wǎng)中發(fā)揮著關(guān)鍵作用。本文將詳細(xì)探討雙向DC/DC轉(zhuǎn)換器在設(shè)計(jì)過程中需要考慮的關(guān)鍵因素,包括部件選擇、熱管理、控制策略以及系統(tǒng)結(jié)構(gòu)等方面。
隨著電子技術(shù)的飛速發(fā)展,DC/DC轉(zhuǎn)換器作為電力電子系統(tǒng)中的關(guān)鍵組件,其性能和應(yīng)用范圍的不斷拓展成為了行業(yè)關(guān)注的焦點(diǎn)。近年來,耦合電感作為一種特殊的電感器件,以其獨(dú)特的電磁耦合性能和緊湊的結(jié)構(gòu)設(shè)計(jì),為DC/DC轉(zhuǎn)換器的應(yīng)用開辟了新的路徑。
在電力電子領(lǐng)域,整流二極管作為將交流電(AC)轉(zhuǎn)換為直流電(DC)的關(guān)鍵元件,其性能直接影響到整個(gè)電源系統(tǒng)的效率和穩(wěn)定性。隨著技術(shù)的不斷進(jìn)步,快速整流二極管模塊以其出色的熱效率、高可靠性和易于集成的特點(diǎn),在各類電力電子設(shè)備中得到了廣泛應(yīng)用。本文將深入探討快速整流二極管模塊如何提供出色的熱效率,并分析其在現(xiàn)代電子系統(tǒng)中的重要性和優(yōu)勢。
三相不控整流電路是電力電子系統(tǒng)中常見的一種電路形式,廣泛應(yīng)用于各種工業(yè)設(shè)備和電源系統(tǒng)中。然而,這類電路在運(yùn)行時(shí)往往存在功率因數(shù)低、輸入電流諧波含量高等問題,影響電網(wǎng)的穩(wěn)定性和電能質(zhì)量。因此,實(shí)現(xiàn)三相不控整流電路的功率因數(shù)校正(PFC)設(shè)計(jì)顯得尤為重要。本文將從三相不控整流電路的基本特性出發(fā),分析其存在的問題,并提出相應(yīng)的PFC設(shè)計(jì)方案,通過仿真驗(yàn)證其有效性。
在電力電子技術(shù)的快速發(fā)展中,數(shù)字電源控制器因其高精度、可編程性和靈活性而逐漸取代傳統(tǒng)的模擬控制器。然而,在實(shí)際應(yīng)用中,數(shù)字電源控制器需要兼容現(xiàn)有的模擬控制系統(tǒng),以確保系統(tǒng)的平穩(wěn)過渡和最大限度地利用現(xiàn)有資源。本文將探討如何通過簡單電路設(shè)計(jì)實(shí)現(xiàn)數(shù)字電源控制器與模擬控制的兼容,并詳細(xì)分析其中的原理與應(yīng)用。
在電力電子技術(shù)領(lǐng)域,脈沖寬度調(diào)制(PWM)技術(shù)作為一種廣泛應(yīng)用的控制策略,在開關(guān)模式穩(wěn)壓器(SMPS)中發(fā)揮著至關(guān)重要的作用。PWM技術(shù)通過調(diào)節(jié)開關(guān)元件的導(dǎo)通時(shí)間(占空比)來控制輸出電壓或電流,具有效率高、體積小、響應(yīng)快等優(yōu)點(diǎn)。然而,PWM控制式開關(guān)模式對穩(wěn)壓器電流的影響是多方面的,本文將從電流波形、紋波、效率、穩(wěn)定性及電磁干擾(EMI)等角度深入探討這些影響。
在電力電子技術(shù)領(lǐng)域,高效、低損耗的電源設(shè)計(jì)一直是研究的熱點(diǎn)。LLC諧振變換器以其高效的零電壓開關(guān)(ZVS)特性和同步整流技術(shù)(Synchronous Rectification, SR)的結(jié)合,成為了現(xiàn)代電源設(shè)計(jì)中不可或缺的一部分。本文將詳細(xì)探討如何將LLC的ZVS特性與同步整流技術(shù)進(jìn)行整合,以實(shí)現(xiàn)更高的轉(zhuǎn)換效率和更低的功率損耗。
隨著電力電子技術(shù)的快速發(fā)展,電力電子變壓器(Power Electronic Transformer, PET)作為傳統(tǒng)電力變壓器的重要替代方案,在電力系統(tǒng)中的應(yīng)用日益廣泛。PET通過高頻電力電子變換技術(shù)實(shí)現(xiàn)電壓變換和能量傳輸,具有體積小、重量輕、調(diào)節(jié)靈活等優(yōu)點(diǎn)。其中,IPOP(Input Parallel Output Parallel)三相四橋臂逆變級作為PET的關(guān)鍵組成部分,其環(huán)流控制直接影響到系統(tǒng)的穩(wěn)定運(yùn)行和效率。本文將深入探討電力電子變壓器中IPOP三相四橋臂逆變級的環(huán)流控制方法。
美國的電磁干擾標(biāo)準(zhǔn)是FCC,CISPR-22與FCC有所不同,但一般來說如果電源符合CISPR-22標(biāo)準(zhǔn),那么它也符合FCC標(biāo)準(zhǔn)。
隨著電力電子技術(shù)的快速發(fā)展,開關(guān)電源作為電子設(shè)備中的重要組成部分,其性能和可靠性直接影響著整個(gè)電子設(shè)備的穩(wěn)定性和使用壽命。單端反激電源作為一種常用的開關(guān)電源類型,其結(jié)構(gòu)簡單、成本較低,在中小功率電源領(lǐng)域得到了廣泛應(yīng)用。然而,在實(shí)際使用過程中,單端反激電源功率管出現(xiàn)電弧短路故障的情況時(shí)有發(fā)生,這不僅影響了電源的正常工作,還可能對設(shè)備造成損壞,甚至危及人員安全。因此,對單端反激電源功率管電弧短路故障進(jìn)行深入分析,找出故障原因并采取相應(yīng)的預(yù)防措施,對于提高電源的穩(wěn)定性和可靠性具有重要意義。
功率 BJT 雖然采用與信號晶體管不同的技術(shù)制造,但具有非常相似的工作特性
電力系統(tǒng)呈現(xiàn)出電力電子化趨勢,在電磁暫態(tài)仿真計(jì)算中,針對不同的仿真對象以及不同的仿真精度要求,使用的數(shù)值計(jì)算方法不盡相同 。