當(dāng)前位置:首頁(yè) > 電源 > 電源
[導(dǎo)讀]引言 變頻電源作為電源系統(tǒng)的重要組成部分,其性能的優(yōu)劣直接關(guān)系到整個(gè)系統(tǒng)的安全和可靠性指標(biāo)?,F(xiàn)代變頻電源以低功耗、高效率、電路簡(jiǎn)潔等顯著優(yōu)點(diǎn)而備受青睞。變頻電

引言

變頻電源作為電源系統(tǒng)的重要組成部分,其性能的優(yōu)劣直接關(guān)系到整個(gè)系統(tǒng)的安全和可靠性指標(biāo)?,F(xiàn)代變頻電源以低功耗、高效率、電路簡(jiǎn)潔等顯著優(yōu)點(diǎn)而備受青睞。變頻電源的整個(gè)電路由交流-直流-交流-濾波等部分構(gòu)成,輸出電壓和電流波形均為純正的正弦波,且頻率和幅度在一定范圍內(nèi)可調(diào)。

本文實(shí)現(xiàn)了基于TMS320F28335的變頻電源數(shù)字控制系統(tǒng)的設(shè)計(jì),通過(guò)有效利用TMS320F28335豐富的片上硬件資源,實(shí)現(xiàn)了SPWM的不規(guī)則采樣,并采用PID算法使系統(tǒng)產(chǎn)生高品質(zhì)的正弦波,具有運(yùn)算速度快、精度高、靈活性好、系統(tǒng)擴(kuò)展能力強(qiáng)等優(yōu)點(diǎn)。

系統(tǒng)總體介紹

根據(jù)結(jié)構(gòu)不同,變頻電源可分為直接變頻電源與間接變頻電源兩大類。本文所研究的變頻電源采用間接變頻結(jié)構(gòu)即交-直-交變換過(guò)程。首先通過(guò)單相全橋整流電路完成交-直變換,然后在DSP控制下把直流電源轉(zhuǎn)換成三相SPWM波形供給后級(jí)濾波電路,形成標(biāo)準(zhǔn)的正弦波。變頻系統(tǒng)控制器采用TI公司推出的業(yè)界首款浮點(diǎn)數(shù)字信號(hào)控制器TMS320F28335,它具有150MHz高速處理能力,具備32位浮點(diǎn)處理單元,單指令周期32位累加運(yùn)算,可滿足應(yīng)用對(duì)于更快代碼開(kāi)發(fā)與集成高級(jí)控制器的浮點(diǎn)處理器性能的要求。與上一代領(lǐng)先的數(shù)字信號(hào)處理器相比,最新的F2833x浮點(diǎn)控制器不僅可將性能平均提升50%,還具有精度更高、簡(jiǎn)化軟件開(kāi)發(fā)、兼容定點(diǎn)C28x TM控制器軟件的特點(diǎn)。系統(tǒng)總體框圖如圖1所示。

圖1系統(tǒng)總體框圖

(1)整流濾波模塊:對(duì)電網(wǎng)輸入的交流電進(jìn)行整流濾波,為變換器提供波紋較小的直流電壓。

(2)三相橋式逆變器模塊:把直流電壓變換成交流電。其中功率級(jí)采用智能型IPM功率模塊,具有電路簡(jiǎn)單、可靠性高等特點(diǎn)。

(3)LC濾波模塊:濾除干擾和無(wú)用信號(hào),使輸出信號(hào)為標(biāo)準(zhǔn)正弦波。

(4)控制電路模塊:檢測(cè)輸出電壓、電流信號(hào)后,按照一定的控制算法和控制策略產(chǎn)生SPWM控制信號(hào),去控制IPM開(kāi)關(guān)管的通斷從而保持輸出電壓穩(wěn)定,同時(shí)通過(guò)SPI接口完成對(duì)輸入電壓信號(hào)、電流信號(hào)的程控調(diào)理。捕獲單元完成對(duì)輸出信號(hào)的測(cè)頻。

(5)電壓、電流檢測(cè)模塊:根據(jù)要求,需要實(shí)時(shí)檢測(cè)線電壓及相電流的變化,所以需要三路電壓檢測(cè)和三路電流檢測(cè)電路。所有的檢測(cè)信號(hào)都經(jīng)過(guò)電壓跟隨器隔離后由TMS320F28335的A/D通道輸入。

(6)輔助電源模塊:為控制電路提供滿足一定技術(shù)要求的直流電源,以保證系統(tǒng)工作穩(wěn)定可靠。

系統(tǒng)硬件設(shè)計(jì)

變頻電源的硬件電路主要包含6個(gè)模塊:整流電路模塊、IPM電路模塊、IPM隔離驅(qū)動(dòng)模塊、輸出濾波模塊、電壓檢測(cè)模塊和TMS320F28335數(shù)字信號(hào)處理模塊。

整流電路模塊

采用二極管不可控整流電路以提高網(wǎng)側(cè)電壓功率因數(shù),整流所得直流電壓用大電容穩(wěn)壓為逆變器提供直流電壓,該電路由6只整流二極管和吸收負(fù)載感性無(wú)功的直流穩(wěn)壓電容組成。整流電路原理圖如圖2所示。



圖2整流電路原理圖

IPM電路模塊

IPM由高速、低功率IGBT、優(yōu)選的門(mén)級(jí)驅(qū)動(dòng)器及保護(hù)電路組成。IGBT(絕緣柵雙極型晶體管)是由BJT(雙極型三極管)和MOS(絕緣柵型場(chǎng)效應(yīng)管)組成的復(fù)合全控型電壓驅(qū)動(dòng)式電力電子器件。GTR飽和壓降低,載流密度大,但驅(qū)動(dòng)電流較大;MOSFET驅(qū)動(dòng)功率很小,開(kāi)關(guān)速度快,但導(dǎo)通壓降大,載流密度小。IGBT綜合了以上兩種器件的優(yōu)點(diǎn),驅(qū)動(dòng)功率小而飽和壓降低,非常適合應(yīng)用于直流電壓。因而IPM具有高電流密度、低飽和電壓、高耐壓、高輸入阻抗、高開(kāi)關(guān)頻率和低驅(qū)動(dòng)功率的優(yōu)點(diǎn)。本文選用的IPM是日本富士公司的型號(hào)為6MBP20RH060的智能功率模塊,該智能功率模塊由6只IGBT管子組成,其IGBT的耐壓值為600V,最小死區(qū)導(dǎo)通時(shí)間為3μs.

IPM隔離驅(qū)動(dòng)模塊

由于逆變橋的工作電壓較高,因此DSP的弱電信號(hào)很難直接控制逆變橋進(jìn)行逆變。美國(guó)國(guó)際整流器公司生產(chǎn)的三相橋式驅(qū)動(dòng)集成電路IR2130,只需一個(gè)供電電源即可驅(qū)動(dòng)三相橋式逆變電路的6個(gè)功率開(kāi)關(guān)器件。



圖3 IR2130驅(qū)動(dòng)其中1個(gè)橋臂的電路原理圖

IR2130驅(qū)動(dòng)其中1個(gè)橋臂的電路原理圖如圖3所示。C1是自舉電容,為上橋臂功率管驅(qū)動(dòng)的懸浮電源存儲(chǔ)能量,D1可防止上橋臂導(dǎo)通時(shí)直流電壓母線電壓到IR2130的電源上而使器件損壞。R1和R2是IGBT的門(mén)極驅(qū)動(dòng)電阻,一般可采用十到幾十歐姆。R3和R4組成過(guò)流檢測(cè)電路,其中R3是過(guò)流取樣電阻,R4是作為分壓用的可調(diào)電阻。IR2130的HIN1~HIN3、LIN1~LIN3作為功率管的輸入驅(qū)動(dòng)信號(hào)與TMS320F8335的PWM連接,由TMS320F8335控制產(chǎn)生PWM控制信號(hào)的輸入,F(xiàn)AULT與TMS320F8335引腳PDPINA連接,一旦出現(xiàn)故障則觸發(fā)功率保護(hù)中斷,在中斷程序中封鎖PWM信號(hào)。

輸出濾波模塊

采用SPWM控制的逆變電路,輸出的SPWM波中含有大量的高頻諧波。為了保證輸出電壓為純正的正弦波,必須采用輸出濾波器。本文采用LC濾波電路,其中截止頻率取基波頻率的4.5倍,L=12mH,C=10μF.

電壓檢測(cè)模塊

電壓檢測(cè)是完成閉環(huán)控制的重要環(huán)節(jié),為了精確的測(cè)量線電壓,通過(guò)TMS320F28335的SPI總線及GPIO口控制對(duì)輸入的線電壓進(jìn)行衰減/放大的比例以滿足A/D模塊對(duì)輸入信號(hào)電平(0-3V)的要求。電壓檢測(cè)模塊采用256抽頭的數(shù)字電位器AD5290和高速運(yùn)算放大器AD8202組成程控信號(hào)放大/衰減器,每個(gè)輸入通道的輸入特性為1MΩ輸入阻抗+30pF.電壓檢測(cè)模塊電路原理圖如圖4所示。


圖4電壓檢測(cè)電路原理圖

系統(tǒng)軟件設(shè)計(jì)

系統(tǒng)上電后按照選定的模式自舉加載程序,跳轉(zhuǎn)到主程序入口,進(jìn)行相關(guān)變量、控制寄存器初始化設(shè)置和正弦表初始化等工作。接著使能需要的中斷,啟動(dòng)定時(shí)器,然后循環(huán)進(jìn)行故障檢測(cè)和保護(hù),并等待中斷。主要包括三部分內(nèi)容:定時(shí)器周期中斷子程序、A/D采樣子程序和數(shù)據(jù)處理算法。主程序流程圖如圖5所示。



圖5主程序流程圖

定時(shí)器周期中斷子程序

主要進(jìn)行PI調(diào)節(jié),更新占空比,產(chǎn)生SPWM波。定時(shí)器周期中斷流程圖如圖6所示。



圖6定時(shí)器周期中斷流程圖

A/D采樣子程序

主要完成線電流采樣和線電壓采樣。為確保電壓與電流信號(hào)間沒(méi)有相對(duì)相移,本部分利用TMS320F28335片上ADC的同步采樣方式。為提高采樣精度,在A/D中斷子程序中采用均值濾波的方法。

對(duì)A相電壓和電流A/D的同步采樣部分代碼如下:

interrupt void adc_isr(void)

{

if(counter==0)

{

receive_a0_data[i++] = AdcRegs.ADCRESULT0>>4;//右移四位

receive_b0_data[j++] = AdcRegs.ADCRESULT1>>4;//右移四位

}

if(counter>=1)

{ //對(duì)結(jié)果取平均,平滑濾波

receive_a0_data[i++] = (receive_a0_data[i0++]+(AdcRegs.ADCRESULT0>>4))/2;

receive_b0_data[j++] = (receive_b0_data[j0++]+(AdcRegs.ADCRESULT1>>4))/2;

}

if(i==512) {i=0;i0=0;}

if(j==512) {j=0;j0=0;counter++;}

AdcRegs.ADCTRL2.bit.RST_SEQ1 =1;//復(fù)位排序器

AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;//清中斷標(biāo)志位

PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;//開(kāi)中斷應(yīng)答

}

數(shù)據(jù)處理算法

本系統(tǒng)主要用到以下算法:(1)SVPWM算法(2)PID調(diào)節(jié)算法(3)頻率檢測(cè)算法

SVPWM算法

變頻電源的核心就是SVPWM波的產(chǎn)生,SPWM波是以正弦波作為基準(zhǔn)波(調(diào)制波),用一列等幅的三角波(載波)與基準(zhǔn)正弦波相比較產(chǎn)生PWM波的控制方式。當(dāng)基準(zhǔn)正弦波高于三角波時(shí),使相應(yīng)的開(kāi)關(guān)器件導(dǎo)通;當(dāng)基準(zhǔn)正弦波低于三角波時(shí),使相應(yīng)的開(kāi)關(guān)器件截止。由此,逆變器的輸出電壓波形為脈沖列,其特點(diǎn)是:半個(gè)周期中各脈沖等距等幅不等寬,總是中間寬,兩邊窄,各脈沖面積與該區(qū)間正弦波下的面積成比例。這種脈沖波經(jīng)過(guò)低通濾波后可得到與調(diào)制波同頻率的正弦波,正弦波幅值和頻率由調(diào)制波的幅值和頻率決定。



圖7不規(guī)則采樣法生成SPWM波原理圖

本文采用不對(duì)稱規(guī)則采樣法,即在三角波的頂點(diǎn)位置與低點(diǎn)位置對(duì)正弦波進(jìn)行采樣,它形成的階梯波更接近正弦波。不規(guī)則采樣法生成SPWM波原理如圖7所示。圖中,Tc是載波周期,M是調(diào)制度,N為載波比,Ton為導(dǎo)通時(shí)間。

由圖7得:



當(dāng)k為偶數(shù)時(shí)代表頂點(diǎn)采樣,k為奇數(shù)時(shí)代表底點(diǎn)采樣。

SVPWM算法實(shí)現(xiàn)過(guò)程:

利用F28335內(nèi)部的事件管理器模塊的3個(gè)全比較單元、通用定時(shí)器1、死區(qū)發(fā)生單元及輸出邏輯可以很方便地生成三相六路SPWM波形。實(shí)際應(yīng)用時(shí)在程序的初始化部分建立一個(gè)正弦表,設(shè)置通用定時(shí)器的計(jì)數(shù)方式為連續(xù)增計(jì)數(shù)方式,在中斷程序中調(diào)用表中的值即可產(chǎn)生相應(yīng)的按正弦規(guī)律變化的SPWM波。SPWM波的頻率由定時(shí)時(shí)間與正弦表的點(diǎn)數(shù)決定。

SVPWM算法的部分代碼如下:

void InitEv(void)

{

EALLOW;

GpioMuxRegs.GPAMUX.all=0x00FF;

EDIS;

EvaRegs.EVAIFRA.all = 0xFFFF;//清除中斷標(biāo)志

EvaRegs.T1PR= 2500;//定時(shí)器1周期值;定時(shí)0.4us*2500=1ms

EvaRegs.T1CMPR = XPWM;//比較值初始化

EvaRegs.T1CNT = 0;EvaRegs.T1CON.all = 0xF54E;//增模式;TPS系數(shù)80M/32=2.5M;T1使能;

EvaRegs.ACTR.all = 0x0006; //PWM1,2低有效

EvaRegs.DBTCONA.all = 0x0534; //使能死區(qū)定時(shí)器1,分頻80M/32=2.5M,死區(qū)時(shí)

//間5*0.4us=2us

EvaRegs.COMCONA.all = 0xA600; //比較控制寄存器

EvaRegs.EVAIMRA.all = 0x0080;

}

PID調(diào)節(jié)算法

在實(shí)際控制中很多不穩(wěn)定因素易造成增量較大,進(jìn)而造成輸出波形的不穩(wěn)定性,因此必須采用增量式PID算法對(duì)系統(tǒng)進(jìn)行優(yōu)化。PID算法數(shù)學(xué)表達(dá)式為

Upresat(t)= Up(t)+ Ui(t)+ Ud(t)

其中,Up(t)是比例調(diào)節(jié)部分,Ui(t)是積分調(diào)節(jié)部分,Ud(t)是微分調(diào)節(jié)部分。

本文通過(guò)對(duì)A/D轉(zhuǎn)換采集來(lái)的電壓或電流信號(hào)進(jìn)行處理,并對(duì)輸出的SPWM波進(jìn)行脈沖寬度的調(diào)整,使系統(tǒng)輸出的電壓保持穩(wěn)定。

PID調(diào)節(jié)算法的部分代碼如下:

float PIDCalc( PID *pp, int NextPoint )

{

int dError,Error;

Error=pp->SetPoint*10-NextPoint; //偏差

pp->SumError+= Error; //積分

dError=pp->LastError-pp->PrevError; //當(dāng)前微分

pp->PrevError = pp->LastError;

pp->LastError = Error;

return

((pp->Proportion) * Error //比例項(xiàng)

+ (pp->Integral) * (pp->SumError) //積分項(xiàng)

+ (pp->Derivative) * dError); //微分項(xiàng)

}

頻率檢測(cè)算法

頻率檢測(cè)算法用來(lái)檢測(cè)系統(tǒng)輸出電壓的頻率。用TMS320F28335片上事件管理器模塊的捕獲單元捕捉被測(cè)信號(hào)的有效電平跳變沿,并通過(guò)內(nèi)部的計(jì)數(shù)器記錄一個(gè)周波內(nèi)標(biāo)頻脈沖個(gè)數(shù),最終進(jìn)行相應(yīng)的運(yùn)算后得到被測(cè)信號(hào)頻率。

實(shí)驗(yàn)結(jié)果

測(cè)量波形

在完成上述硬件設(shè)計(jì)的基礎(chǔ)上,本文采用特定的PWM控制策略,使逆變器拖動(dòng)感應(yīng)電機(jī)運(yùn)行,并進(jìn)行了短路、電機(jī)堵轉(zhuǎn)等實(shí)驗(yàn),證明采用逆變器性能穩(wěn)定,能可靠地實(shí)現(xiàn)過(guò)流和短路保護(hù)。圖8是電機(jī)在空載條件下,用數(shù)字示波器記錄的穩(wěn)態(tài)電壓波形。幅度為35V,頻率為60Hz.



圖8輸出線電壓波形

測(cè)試數(shù)據(jù)

在不同頻率及不同線電壓情況下的測(cè)試數(shù)據(jù)如表1所示。



表1不同輸出頻率及不同線電壓情況下實(shí)驗(yàn)結(jié)果

結(jié)果分析

由示波器觀察到的線電壓波形可以看出,波形接近正弦波,基本無(wú)失真;由表中數(shù)據(jù)可以看出,不同頻率下,輸出線電壓最大的絕對(duì)誤差只有0.6V,相對(duì)誤差為1.7%.

結(jié)束語(yǔ)

本文設(shè)計(jì)的三相正弦波變頻電源,由于采用了不對(duì)稱規(guī)則采樣算法和PID算法使輸出的線電壓波形基本為正弦波,其絕對(duì)誤差小于1.7%;同時(shí)具有故障保護(hù)功能,可以自動(dòng)切斷輸入交流電源。因此本系統(tǒng)具有電路簡(jiǎn)單、抗干擾性能好、控制效果佳等優(yōu)點(diǎn),便于工程應(yīng)用,具有較大的實(shí)際應(yīng)用價(jià)值。


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉